(3.210.184.142) 您好!臺灣時間:2021/05/13 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張朝南
研究生(外文):Chau-nan Chang
論文名稱:氫化非晶矽化合物作為指叉式矽晶太陽能電池鈍化層之研究
論文名稱(外文):Amorphous Hydrogenated Silicon Compounds as Passivation Layers for n-type Si IBC Solar Cell
指導教授:洪儒生洪儒生引用關係
指導教授(外文):Lu-Sheng Hong
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:116
中文關鍵詞:鈍化層氫化非晶矽太陽能電池電漿輔助化學氣相沉積
外文關鍵詞:passivation layeramorphous hydrogenated Sisolar cellplasma enhanced chemical vapor deposition (PECVD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用低溫、低電漿密度的UHV-PECVD系統成長太陽能電池的i層鈍化層,其材料種類有a-Si:H、a-SiOx:H、a-SiNx:H及a-SiCONx:H,並使用金屬遮罩搭配獨立腔體聯結式PECVD系統成長p、n層,嘗試做出新型IBC結構的太陽能電池元件。
首先以KOH溶液在矽基材正面製作出金字塔形結構,用SEM觀察發現其具有緻密且分布均勻的表面,反射率低至10 %。使用橢圓儀和紫外光與可見光光譜儀對於鈍化層a-Si:H的光學能隙做測量結果發現氫氣稀釋比從10升到50時,薄膜的光學能隙約從1.84 eV提昇至1.94 eV。另外,加入碳源氣體的a-SiCx:H層具高光穿透度高( >90 %)及寬能隙(1.96 eV~2.82 eV)等優點,在作為矽晶太陽能電池的射極應是適當的。
在矽晶上的鈍化層界面由RHEED觀察得知,使用n-Si(100)的基材,在氫氣稀釋比為10時的初期長膜,即有結晶的現象產生。另外使用潻加CO2 的長膜發現,當鈍化層中含有氧化矽鍵結時,在同等條件下,鈍化層薄層(5 nm)表面卻呈現非晶結構。比較各種非晶矽鈍化層的效應時發現,含氧 9.1 %~26.2 %的a-SiOx:H層、含氮 13.1 %~18.6 %的a-SiNx:H的鈍化層來鈍化矽晶表面後,皆可使其有效載子生命期達到2000 μs以上且表面復合速率在5.6 cm/s以下,代表達到一定的鈍化效果。
在太陽能電池元件的製作上,以PECVD法製備鈍化層後,隨即以低溫製程方式利用遮罩在矽基材背面分別製作了p+及n+的區域,並成長TEOS-SiOx鈍化層後,以一道光罩製作了點狀電極的區域。最後用電子束蒸鍍及似網印法做電極部分,即完成元件的製作。
以IV測量暨太陽光模擬器來評估元件的光電特性,發現未照光下已具二極體特性,照光後,開放電壓約0.2 V,短路電流最佳約0.4 mA/cm2。
This research focused on different materals characterization for passivation layers, such as a-Si:H, a-SiCx , a-SiOx , a-SiNx , and a-SiCONx . We used low temperature and low power density plasma process to make a new structure of IBC solar cell by UHV-CVD, triple-chamber PECVD, and touch-screen PECVD systems.
The silicon surface was etching by KOH solution, and it became dense and uniform texture structure, as like pyramids which were observed by SEM. The best reflection index of texture structure was under 10 %. The a-Si:H layers were deposited that when hydrogen dilution ratio increased from 10 to 50, the optical band gap increased from 1.84 eV to 1.94 eV by UV-Visible spectrometer and ellipsometry. Besides, silicon carbide film was suitable for emitter or BSF of solar cell because it had high optical transmittance, and wide band gap.
The a-Si:H layers were deposited on n-Si(100) that when hydrogen dilution ratio increased from 10 to 50, their surface were crystalline. On the other hand, when hydrogen dilution ratio was 10 as SiO2 / n-Si(100) substrate, the surface was amorphous. Using a-SiOx:H layers which contained oxygen 9.1 %~26.2 % and a-SiNx:H layer which contained nitrogen 13.1 %~18.6 % to passivate silicon surface,their effective carrier lifetime reached above 2000 μs. Besides, the surface recombination velocity were all under 5.6 cm/s,it indicated good passivation effects.
In flow processes of the solar cell, we grew a passivation layer by UHV-PECVD, and used mask to grow p+ and n+ layer on the back of silicon substrate in low temperature process. After growing TEOS-SiOx passivation layer, we made the hole area for point electrode by etching and photolithography process. And we used e-beam evaporation and screen imprint-like methods to make electrodes.
Finally, we used IV-curve and sun light simulator to measure the optoelectronic property of the solar cell chip. The chip had diode property under dark surroundings. After lighting, we could get that Voc was about 0.2 V, and Isc was about 0.4 mA/cm2.
中文摘要………………………………………………................I
英文摘要………………………………………………..……………………….… III
誌謝………………………………………………..… ………….……………….….V
目錄………………………………………………..…………………...…….…… VII
圖索引………………………………………………..…………..…………….….... X
表索引…………………………………………..………………………………. XVI

緒論
1.1 導言………………………………………..…………………………. 1
1.2 超高效率之PERL、HIT及IBC型矽太陽能電池介紹.…….. 4
1.3 研究理論與方向………………………………………..…………….. 11
第二章 實驗相關部分
2.1 實驗氣體及藥品…………………………………………………... 18
2.2 實驗設備及操作方法
2.2-1 超高真空電漿輔助化學氣相沉積系統………..…22
2.2-2 三重腔體的電漿輔助化學氣相沉積系統…...….. 26
2.2-3 觸控式電漿輔助化學氣相沉積系統……………. 28
2.3 實驗程序
2.3-1 Si(100)基材的前處理……………………………….…. 31 2.3-2 新型太陽能電池之製作流程…………..…...…...… 33
2.4 分析儀器……………………………………………….…………… 37
第三章 實驗結果與討論
3.1 金字塔型結構及SiOx抗反射層的特性分析
3.1-1 金字塔型結構之製造及其光學特性….…......……….. 45 3.1-2 SiOx抗反射層之薄膜組成及光學性質………….…..….49
3.2 各種i層鈍化層的光學特性評估
3.2-1 鈍化層的沉積速率及光學能隙…….……………....….53 3.2-2 a-Si:H、a-SiCx:H之穿透度及其光學能隙……………....66
3.3 單晶矽表面以低溫電漿化學氣相沉積鈍化層之探討 3.3-1 在不同基材上觀察a-Si:H之表面結晶情形………... 73
3.3-2以電漿鍍超薄鈍化層的表面結晶情形………...……….76
3.3-3各種鈍化層的薄膜組成…………………………………… 80
3.4 超薄鈍化層的鈍化效果評估……………………….………….… 87
3.5 太陽能電池的製作:金屬遮罩的設計、鈍化層微影蝕刻及電極製作
3.5-1 金屬遮罩的線寬條件及可行性之確立……………….91
3.5-2 鈍化層微影後蝕刻情形........................................95
3.5-3 電極的製作……………………..………...………………. 98
3.6 太陽能電池元件的效率量測
3.6-1第一代太陽能電池元件製作及光電特性量測…...100
3.6-2 太陽能電池元件完整製作流程及光電特性量測….105

第四章 結論………………….……….………...…………………….……110
參考文獻………………….……….………...……………………………….…111
[1] 經濟部能源局,http://www.moeaboe.gov.tw/oil102/
[2] 國際能源總署(International Energy Agency, IEA),
http://www.iea.org/
[3] 來源:茂迪科技,http://www.motechind.com/
大億光能,http://www.kenmos-pv.com.tw/
SunPower.Co,http://www.sunpowercorp.com/
Sanyo.Co,http://ca.sanyo.com/en-CA/industrial/Solar/
2007 歐洲太陽能光電會議(EU-PVSEC),etc。
http://www.photovoltaic-conference.com/
http://www.wretch.cc/blog/joseph555/12779902
[4] 來源: Photonic Industry and Technology Development Association,
PIDA,http://www.pida.org.tw/welcome.asp
[5] J. Zhao, Solar Energy Materials & Solar Cells, 82, p. 53 (2004).
[6] S. Taira, Y. Yoshimine, T. Baba, M. Taguchi, H. Kanno, T. Kinoshita,H. Sakata, E. Maruyama and M. Tanaka, 22nd EU-PVSEC,Milano, Italy ,
2007, in print.
[7] M. Tanaka, M. Taguchi, T. Matsuyama, Jpn. J. Appl. Phys., Part 1, 31, p. 3518 (1992).
[8] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane,
K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, Prog. Photovolt:
Res. Appl., 8, p. 503 (2000).

[9] T. H. Wang, M. R. Page, E. Lwaniczko, D. H. Levi, Y. Yan, H. M.
Branz, and Q. Wang, 14th Workshop on Crystalline Silicon Solar
Cells and Modules, Winter Park, Colorado, 2004.
[10] D. C. Marvin and S. L. Froedge, Proceedings of the 24th Intersociety Energy Conversion Engineering Conference, p. 821,
Arlington, VA , 1989.
[11]K. R. McIntosh, M. J. Cudzinovic, D. D. Smith, W. P. Mulligan , and R. M. Swanson, 3rd World Conference on Photovoltaic Energy
Conversion, p. 971, Osaka, Japan, 2003.
[12] M. D. Lammert, R. J. Schwartz, IEEE Translations on Electron
ED-24, p. 337 (1977).
[13] H. Fujiwara and M. Kondo, Appl. Phys. Lett., 90, p. 013503 (2007).
[14] H. Fujiwara, T. Kaneko and M. Kondo, Appl. Phys. Lett., 91,
p. 133508 (2007).
[15] J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H.
Yamamoto, T. Sato, A. Limmanee, A. Yamada and M. Konagai,
Jpn. J. Appl. Phys., Vol. 46, No. 6A, p. 3296 (2007).
[16] O. Nichiporuk, A. Kaminskia, M. Lemitia, A. Fave, V. Skryshevsky,
Solar Energy Materials & Solar Cells, 86, p. 517 (2005).
[17] K. Nakayashiki, A. Rohatgi, S. Ostapenko, and I. Tarasov, J. Appl.
Phys., 97, p. 024504 (2005).
[18] A. Goetzberger, J. Knobloch, B. Voβ, “Crystalline Silicon Solar
Cells”, John Wiley & Sons, New York, Chap. 9, p. 218 (1998).
[19] E. Vazsonyi, Z Vertesy, A. Toth, and J. Szlufcik, J. Micromech.
Microeng., 13, p. 165 (2003).
[20] C. Banerjee, K. L. Narayanan, K. Haga, J. Sritharathikhun, S.
Miyajima, A. Yamada, and M. Konagai, Jpn. J. Appl.Phys., Vol. 46,
No. 1, p. 1 (2007).
[21] U. Gangopadhyay, K. H. Kim, S. K. Dhungel, U. Manna, P. K. Basu, M. Banerjee, H. Saha, Junsin Yi, Solar Energy Materials & Solar
Cells, 90, p. 3557 (2006).
[22] S. Y. Lien, D. S. Wuu, W. C. Yeh, and J. C. Liu, Solar Energy
Materials & Solar Cells, 90, p. 2710 (2006).
[23] A. Mahdjoub, Semiconductor Physics, Quantum Electronics &
Optoelectronics, V. 10, N 1, p. 60 (2007).
[24] R. W. Collins, and C. Y. Huang, physical review B, Vol. 34, No. 4,
p. 2910 (1986).
[25]M. León, R. Serna, S. Levcenko, A. Nateprov, A. Nicorici, J. M.
Merino, and E. Arushanov, phys. stat. sol. (a) 203, No. 11, p. 2913
(2006).
[26] J. Mullerov´a, S. Jurecka, P. Sutta, M. Mikula, acta physica slovaca, Vol. 55, No. 3, p. 351 (2005).
[27] Y. H. Wang , J. Lin, C. H. A. Huan, Materials Science and
Engineering B104, p. 80 (2003).
[28]W. Yu,W. Lu, L. Han and G. Fu, J. Phys. D: Appl. Phys. 37,
p. 3304 (2004).
[29] D. Das, A. K. Barua, Solar Energy Materials & Solar Cells, 60,
p. 167 (2000).
[30] R. Vernhes, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu,
J. Appl. Phys., 100, p. 063308 (2006).
[31] G. Tamizhmanit, M. Cociverats, R. T. Oakley, C. Fischer, and M.
Fujimoto, J. Phys. D: Appl. Phys., 24, p. 1015 (1991).
[32] B. Abeles, and T. Tiedje, Phys. Rev. Lett., Vol. 51, No. 21, p. 2003
(1983)
[33] Y. T. Kim, B. Hong, G. E. Jang, S. J. Suh, and D. H. Yoon, Cryst.
Res. Technol., 37, p. 219 (2002) .
[34] T. Takada and K. Sasaki, Electronics and Communications in Japan,
Part 2, Vol. 83, No. 8, p.52 (2000).
[35] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben,
“Handbook of X-ray Photoelectron Spectroscopy”, Physical
Electronics, Inc, Minnesota, p. 40、p. 42、p. 44、p. 56 (1992).
[36] M. Lu, S. Bowden, U. Das, and R. Birkmire, Appl. Phys. Lett.,
91, p. 063507 (2007).
[37] S. D. Wolf, and M. Kondo, Appl. Phys. Lett., 90, p. 042111 (2007).
[38] D. K. Schroder, Semiconductor Material and Device Characterization,
3rd ed., Wiley-Interscience, Hoboken, NJ, 2006.
[39] R. M. Swanson, R. A. Sinton and D. E. Kane, IEEE, p. 532 (1988).
[40] Sunpower Co., US Patent 6423568 - Method of fabricating a silicon
solar cell.
[41] 賴宜呈,”以三丁基磷及三甲基硼成長矽薄膜摻雜層及其光電性質的研究“, 國
立台灣科技大學96年材料所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔