(3.238.96.184) 您好!臺灣時間:2021/05/12 16:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江昆達
研究生(外文):Kwun-Da Juang
論文名稱:奈米級及次微米級核殼型橡膠添加劑及蒙特納石黏土對苯乙烯/乙烯基酯/特用添加劑三成份系之聚合固化反應動力及玻璃轉移溫度之影響研究
論文名稱(外文):Effects of nano-scale and submicron-scale core-shell rubber additives, and montmorillonite clay on the cure kinetics and glass transition temperatures for styrene/ vinyl ester /additive ternary systems
指導教授:黃延吉
指導教授(外文):Yan-Jyi Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:330
中文關鍵詞:核殼橡膠未飽和聚酯
外文關鍵詞:reactive microgelcore-shell rubber
相關次數:
  • 被引用被引用:1
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文之目的,乃探討三種特用添加劑,分別為:(1) 反應性微膠顆粒(2)奈米級與次微米級核殼型橡膠(core-shell rubber)添加劑及(3)矽烷改質蒙特納石黏土(montmorillonite clay,MMT),其對苯乙烯/不飽和樹脂/特用添加劑三成份系統之聚合固化動力及玻璃轉移溫度影響。吾人利用微分掃描熱分析儀(DSC)及傅立葉轉換紅外光譜儀(FTIR)測量ST/UP/additive三成份系在聚合固化過程中之反應動力。最後依據Takayanagi機械模式,ST/UP/additive三成份系聚合固化後的樣品,其在各相區之玻璃轉移溫度,吾人亦以動態機械測定儀(DMA)測量之。
The effects of reactive microgel (RM) and nano-scale and sub-micron scale core shell rubbers (CSR) as low-profile additives (LPA), and silane treated montmorillonite clay (MMT) on the cure kinetics and glass transition temperatures for styrene/unsaturated polyester/additive ternary systems have been investigated. The reaction kinetics for the ST/UP/additive ternary system during the cure was measured by differential scanning calorimetry (DSC) and Fourier transform infrared spectrometry (FTIR). Finally, based on the Takayanagi mechanical models, the glass transition temperature in each region of the cured samples for ST/UP/additive ternary systems has been measured by the dynamic mechanical analysis (DMA).
中文摘要-------------------------------------------------------------------------I
英文摘要-------------------------------------------------------------------------II
誌謝-------------------------------------------------------------------------------III
圖表索引------------------------------------------------------------------------VI
第一章 緒論-----------------------------------------------------------------------1
1-1 高分子複合材---------------------------------------------------------1
1-2 抗收縮劑---------------------------------------------------------------3
1-3 乙烯基酯樹脂---------------------------------------------------------4
1-4 核殼型(Core-Shell Rubber, CSR)改質不飽和聚酯樹脂--------5
1-5 蒙特納石黏土(Montmorillonite, MMT)及其高分子奈米複合材料---------------------------------------------------------------------6
1-6 研究範疇---------------------------------------------------------------7
第二章 文獻回顧-----------------------------------------------------------------8
2-1不飽和聚酯與苯乙烯之交聯共聚合反應--------------------------8
2-2不飽和聚酯樹脂之反應動力學模式之研究---------------------11
2-3不飽和聚酯樹脂之聚合固化研究---------------------------------16
2-4低收縮不飽和聚酯樹脂之聚合固化研究------------------------17
2-5核殼型橡膠增韌劑之效應------------------------------------------19
2-6不飽和聚酯樹脂系統之玻璃轉移溫度之研究------------------22
2-7蒙特納石黏土-高分子奈米複合材料研究--------------------------25
第三章 實驗方法---------------------------------------------------------------28
3-1 原料-----------------------------------------------------------------------28
3-1-1不飽和聚酯樹脂-----------------------------------------------28
3-1-2奈米級與次微米級核殼型橡膠之特用添加劑-----------30
3-1-3反應性微膠顆粒-----------------------------------------------32
3-1-4蒙特納石黏土之合成原料-----------------------------------34
3-2 實驗儀器---------------------------------------------------------------35
3-3 實驗步驟---------------------------------------------------------------36
3-3-1 PK-805型clay之鈉活性化處理------------------------------36
3-3-2 Silane-treated MMT 之製備--------------------------------36
3-3-3 DSC反應動力測試步驟---------------------------------------37
3-3-4 DMA三成份試片製備-----------------------------------------38
3-3-5 ST/UP/additive三成份系之相容性---------------------------41
3-4性質測試與分析------------------------------------------------------42
3-4-1熱分析-------------------------------------------------------------42
3-4-2 FTIR定量分析--------------------------------------------------44
3-4-3 DMA理論基礎--------------------------------------------------55
第四章 結果與討論------------------------------------------------------------56
4-1 Silane-Treated MMT FTIR定量分析-----------------------------56
4-2 微觀結構--------------------------------------------------------------76
4-2-1 ST/UP兩成份系之微觀結構---------------------------------76
4-2-2 St/VER/奈米級與次微米級核殼型橡膠系統(E0系統)--80
4-2-3 ST/VER/奈米級與次微米級核殼型橡膠系統(E1系統)-93
4-2-4 St/UP/奈米級與次微米級核殼型橡膠系統SEM微觀型態結構之整體比較-------------------------------107
4-2-5 St/VER/蒙特鈉石黏土(MMT)三成份系統----------------115
4-3 DSC反應動力-------------------------------------------------------120
4-3-1 不同苯乙烯對VER之C=C雙鍵莫耳比(MR)之純VER樹脂DSC反應動力-------------------------------------------------120
4-3-2 ST/UP 雙成份系之DSC反應動力-------------------------124
4-3-3 ST/UP/RM三成份系之DSC反應動力--------------------128
4-3-3-1 ST/VER/10% RM三成份系之DSC反應動力--------128
4-3-3-2 ST/MA-PG/10% RM三成份系之DSC反應動力----133
4-3-3-3 ST/MA-PA-PG/10% RM三成份系之DSC反應動--138
4-3-4 ST/UP/CSR三成份系之DSC反應動力-------------------143
4-3-4-1 ST/VER/CSR(E0-30)三成份系之DSC反應動力----143
4-3-4-2 ST/VER/CSR(E0-60)三成份系之DSC反應動力----148
4-3-4-3 ST/VER/CSR(E0-260)三成份系之DSC反應動力--152
4-3-4-4 ST/VER/CSR(E1-30)三成份系之DSC反應動力----156
4-3-4-5 ST/VER/CSR(E1-60)三成份系之DSC反應動力----160
4-3-4-6 ST/VER/CSR(E1-30)三成份系之DSC反應動力----164
4-3-4-7 ST/ VER / 5% CSR 之三成份系之DSC反應動力--168
4-3-4-8 ST/MA-PG/ 5% CSR三成份系之DSC反應動力----173
4-3-4-9 ST/MA-PA-PG/ 5% CSR三成份系之DSC反應動力---------------------------------------------------------------182
4-3-5 ST/VER/Silane-Treated MMT三成份系統-------------------183
4-3-5-1 ST/VER/Silane-Treated MMT三成份系統------------183
4-3-5-2 ST/UP/5% Silane-Treated MMT三成份系之DSC反應動力------------------------------------------------------------188
4-4 FT-IR反應動力-----------------------------------------------------------192
4-4-1 校正曲線------------------------------------------------------192
4-4-2純粹乙烯基酯樹脂(Vinyl ester resin , VER)系統反應動
力-----------------------------------------------------------------198
4-4-3 由FT-IR計算不飽和聚酯C=C雙鍵轉化率------------201
4-4-3-1純粹乙烯基酯樹脂(Vinyl ester resin , VER)系統反應動力------------------------------------------------------201
4-4-3-2純粹MA-PG系統反應動力---------------------------205
4-4-3-3純粹MA-PA-PG系統反應動力----------------------209
4-4-3-4 ST/UP 雙成份系統比較------------------------------213
4-4-3-5 ST/VER/CSR三成份系統--------------------------------215
4-4-3-5-1 ST/VER/5% CSR(E0-30)三成份系統------------215
4-4-3-5-2 ST/VER/5% CSR(E0-60)三成份系統------------219
4-4-3-5-3 ST/VER/5% CSR(E0-260)三成份系統-----------223
4-4-3-5-4 ST/VER/5% CSR(E1-30)三成份系統------------227
4-4-3-5-5 ST/VER/10% CSR(E1-30)三成份系統-----------231
4-4-3-5-6 ST/VER/5% CSR(E1-260)三成份系統-----------235
4-4-3-5-7 ST/VER/CSR三成份系統之比較-----------------239
4-5 Takayanagi 機械模式與各相區之玻璃轉移溫度-------------------247
4-5-1以DMA測定ST/VER/CSR三成份係聚合固化樣品之Tg--------------------------------------------------------------249
4-5-1-1純粹乙烯基酯樹脂(Vinyl ester resin , VER)系統------------------------------------------------------------249
4-5-1-2 ST/UP雙成份系統之比較---------------------------255
4-5-2添加反應性微膠顆粒RM之ST/ UP/ RM聚合固化樣品之三成份系之DMA測試-------------259
4-5-2-1 ST/ VER / 10% RM 之三成份系-----------------259
4-5-2-2 ST/ MA-PG/ 10% RM 之三成份系--------------263
4-5-2-3 ST/ MA-PA-PG/ 10% RM 之三成份系---------268
4-5-3 ST/ VER / CSR 之三成份系----------------------------274
4-5-3-1 ST/ VER / CSR(E0-30) 之三成份系-------------274
4-5-3-2 ST/ VER/ CSR(E0-60) 之三成份系--------------279
4-5-3-3 ST/ VER / CSR(E0-260) 之三成份系-----------283
4-5-3-4 ST/ VER / CSR(E1-30) 之三成份系-------------287
4-5-3-5 ST/ VER / CSR(E1-60) 之三成份系-------------292
4-5-3-6 ST/ VER / CSR(E1-260) 之三成份系-----------297
4-5-3-7 ST/ UP / 5% CSR 之三成份系--------------------301
4-5-4 ST/ VER / Silane-Treated MMT 之三成份系--------310
4-5-5 ST/ UP / 5% Silane-Treated MMT 之三成份系-----314
第五章 結論-----------------------------------------------------------------318
參考文獻--------------------------------------------------------------------324
1.W. Worthy, Chem. Eng. News 7, 1987, March 16.
2.江文慶, 碩士論文, 台灣科技大學, 1996.
3.E.J.Bartkus and C.H.Kroekel, Appl.Polym.Symp,15,113(1970)
4.K.E Atkins,in Sheet Molding Compounds:Science and Technology. Ch.4, H.G.Kia ed., Hanser Publishers,N ew York,1993.
5.V. A. Pattison, R. R. Hindersinn, and W. T. Schwartz, J. Appl. Polym. Sci., 18, 2736(1974).
6.V. A. Pattison, R. R. Hindersinn, and W. T. Schwartz, J. Appl. Polym. Sci., 19, 3045(1975).
7.Y. J. Huang and C. M. Liang, Polymer, 37, 401(1996).
8.T. Mitani, H.Shiraish, K. Honda, and G. E. Owen in 44th Annual Conference, Composites Institute, Cincinnati, Ohio; the Society of the Plastics Industry(SPI), New York, 1989, P.12F.
9.W. Li and L. J. Lee, Polymer, 39, 5677(1998).
10.M. Kinkelaar, S. Muzumdar, and L. J. Lee, Polym. Eng. Sci., 35, 823(1995).
11.R. R. Hill, S. Muzumdar, and L. J. Lee, Polym. Eng. Sci., 35, 852(1995).
12.R.E. Young, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, New York, 1976.
13.M.E. Kelly, in “Unsaturated P Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, New York, 1976, p.370.
14.F. Fekete, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, New York, 1976, p.28.
15.Y. J. Huang, J. H. Wu, J. G. Liang, M.W. Hsu, and J. K. Ma, J. Appl. Polym. Sci.,107, 939(2008).
16.E. Martuscelli, P.Musto, G. Ragosta, G. Scarinzi, and E. Bertotti, J. Polym. Sci., Part B:Polym. Phys., 31, 619(1993).
17.S. B. Pandit, and V. M. Nadkarni, Ind. Eng. Chem. Res., 33, 2778(1994).
18.劉嘉樺,碩士論文,台灣科技大學, 2008.
19.B. M. Novak, Adv. Mater., 5, 422(1993).
20.X. Kornmann, L. A. Berghund, J. Sterte, and E. P. Giannelis, Polym. Eng. Sci., 38, 1351(1998).
21.Y.Kojima, A.Usuki, M.Kawasumi, A.Okada, T.Kurauchi, and O.Kamigaito, J.Polym.Sci. Part A: Polym.Chem, 31,983,(1993)
22.E. P. Giannelis, Adv. Mater., 8, 29(1996).
23.A.Usuki, Y. Kojima, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res. 8, 1179(1993).
24.P. B. Messersmith and E. P. Giannelis, Chem. Mater., 6, 1719(1994).
25.W. Gilman and T. Kashiwagi, SAMPE Journal, 33, 42(1997).
26.Y. J. Huang and J. C. Horng, Plymer, 39, 3683(1998).
27.Y. S. Yang and L. J. Lee, Polymer, 29 ,1793 (1988).
28.K. Horie, I. Mita, and H. Kambe, J. Polym. Sci. PartA-1: Polym. Chem., 7, 2561 (1969)
29.M.R. Kamal, S. Slurour.,and M. Ryan, SPE. ANTEC Papers. 19, 187 (1973).
30.S.Y. Pusatcioglu, A.L.Fricke., and J.C. Hasseler, J. Appl. Polym. Sci., 24, 937 (1979).
31.C. D. Han, and K. W. Lem, J. Appl. Polym. Sci., 28, 749 (1983).
32.J. F. Stevenson, Polym. Eng. Sci., 26(11), 746 (1989).
33.J. F. Stevenson, SPE. ANTEC. Papers, 26, 452(1980).
34.L. J. Lee, Polym. Eng. Sci., 21, 483 (1981).
35.Y. J. Huang, and L. J. Lee, AICHE. J., 31, 1585(1985).
36.C. D. Han, and D. S. Lee, J. Appl. Polym. Sci., 37, 2859 (1987).
37.C. S. Chern, and D. C. Sundberg, ACS. Polym. PREP, 26(1), 296 (1985).
38.G. L. Batch, and C. W. Mocosko, SPE. ANTEC Paper, 974(1987).
39.Y. J. Huang, J. D. Fan, and L. J. Lee, Polym. Eng. Sci., 30(11), 684(1990).
40.Y. J. Huang and T. J. Lu, and W. Hwu, Polym. Eng. Sci., 33, 1(1993).
41.Y. J. Huang and C. J. Chen, J. Appl. Polym. Sci., 47, 1533(1993).
42.Y. J. Huang and C. C. Su, J. Appl. Polym. Sci., 55, 305(1995).
43.Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym. Sci., 89, 3336(2003).
44.J. P. Dong, J. G. Huang, F. H. Lee, J. W. Roan, and Y. J. Huang, J. Appl. Polym. Sci., 91, 3388(2004).
45.S. B. Pandit and V. M. Nadkani, Ind. Eng. Chem. Res., 33, 2778(1994).
46.D. S. Kim, K. Cho, J. H. An, and C. E. Park., J. Mater. Sci., 29, 1854(1994).
47.J. S. Ullett,and R. P. Chartoff, Polym. Eng. Sci., 35, 1086(1995).
48.M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, and G. Scarinzi, J. Appl. Polym. Sci., 58, 1825(1995).
49.M. L. L. Maspochand , and A. B. Matinez, Polym.Eng. Sci., 38, 290(1998).
50.N. A. Miller and C. D. stirling, Polym. Polym. Comps., 9, 31(2001).
51.The B. F. Goodrich Co., WO 93/31374(Oct. 28, 1993).
52.K. F. Lin and Y. D. Shieh, J. Appl. Polym. Sci., 69, 2069(1998).
53.K. F. Lin and Y. D. Shieh, J. Appl. Polym. Sci., 70, 2313(1998).
54.P. Hazot, C. Pichot, and A. Maazouz, Macromol. Chem. Phys., 201, 632(2000).
55.B.J.P. Jansen, S. Rastogi, H. E. H. Meijer, and P. J. Lemstra, Macromolecules, 34, 3998(2001).
56.H.J. Sue, E.I. Garciameitin, and D.M. Picklman, in ”Polymer Toughening”, Ch. 5, Ed., C. B. Arends, Marcel Dekker, New York, 1996.
57.The Dow Chemical Company, US Patent 4,778,851(Oct. 18 1998).
58.J. Y. Qian, R. A. Pearson, V. L. Dimonie, and M. S. El-Aasser, J. Appl. Polym. Sci.,58, 439(1995).
59.W.D. Cook and O. Delatycki, J. Polym. Sci., PartB:Polym. Phys., 12, 2111(1974).
60.J. C. Lucas, J. Borrajo and R. J. J. Williams, Polymer, 34, 3216(1993).
61.C. B. Bucknall, I. K. Partridge and M. J. Phillips, Polymer, 32, 786(1991).
62.梁繼文, “礦物學(下)”, 台北市, 五南圖書, 1984.
63.W. E. Worrall, “Clays and Caramic Raw Materials,” 2nd Ed, Elsevier, London, 1986.
64.T. Lan and T. J. Pinnavaia. Chem. Mater., 6, 2216(1994)
65.徐曼紋,碩士論文,台灣科技大學,2003
66.Y.S. Yang and L.J.Lee., J. Appl. Polym. Sci., 36, 1325 (1988).
67.K.Horie, I Mita and H.Kambe, J. Polym. Sci., Part A1, 8, 2839 (1970).
68.Y. S. Yang and L. J. Lee, Macromolecules 20, 1490(1987).
69.盧天智,碩士論文,台灣科技大學,1980.
70.Y. J. Huang and J. S. Leu, Polym. 34, 301 (1993)
71.S. L. Rosen, “Fundamental Principles of Polymeric Materials, ” 2nd Ed., Wiley, New York, 1993, pp.321-337.
72.T. J. Prosa, B. J. Bauer, E. J. Amis, D. A. Tomalia, R. Scherrenberg, J. Polym. Sci. : Part B: Polymer Physics, 35, 2913 (1997)
73.T. Konishi, T. Yoshizaki, T. Saito, Y. Einaga, and H. Yamakawa, Macromolecules 1990,23, 290 (1990)
74.L.H. Sperling, “Introduction to Physical Polymer Science,” 3rd Ed. Wiley, New York, 2001, P.85~90
75.M. Osa, T. Yoshizaki, and H. Yamakawa, Macromolecules 2000, 33, 4828.
76.林武賢,碩士論文,台灣科技大學, 2008.
77.R.E.Grim, Clay Mineralogy, McGraw-Hill, New York (1953).
78.J. P. Ibar, ”Fundamentals of Thermal Stimulated Current and Relaxation Map Analysis”, SLP Press, New Canaan, CT, 1993.
79.G. Tessedre, S. Mezghani, A. Bernes, and C. Lacabanne, “Dielectric Spectrocopy of Polymeric Materials: Fundamentals and Applications,” J. P. Runt, and J. J. Fitzgerald, Eds., American Chemical Society, Washington, D.C., 1997, Chapter 8.
80.J. Als-Nielsen and D. McMorrow, ” Elements of Modern X-Ray Physics,” Wiley, New York, 2001.
81.B. D. Cullity, “Elements of X-ray Diffraction,“ 2nd Ed., Addison-Wesley, Reading, MA,
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 奈米級及次微米級核殼型橡膠添加劑及蒙特納石黏土對苯乙烯/乙烯基酯/特用添加劑三成份系之体積收縮、內部可染色性、機械性質及微觀型態結構之影響研究
2. 以RAFT活自由基聚合法合成用於不飽和聚脂、乙烯基脂及環氧樹脂之奈米級無機矽膠/有機高分子核殼型顆粒添加劑
3. 反應性微膠顆粒型抗收縮劑、奈米級核殼型橡膠增韌劑及蒙特納石黏土對苯乙烯/不飽和聚酯/特用添加劑三成份系之聚合固化反應動力及玻璃轉移溫度之影響研究
4. 奈米級及次微米級核殼型橡膠添加劑、無機矽膠/有機高分子核殼型顆粒、及蒙特納石黏土對不飽和聚酯、乙烯基酯、及環氧樹脂之聚合固化反應動力及玻璃轉移溫度之影響研究
5. 以傳統乳化聚合法及RAFT活自由基乳化聚合法合成用於不飽和聚酯、乙烯基酯及環氧樹脂之奈米級及次微米級壓克力核殼型橡膠添加劑
6. 以RAFT活自由基聚合法合成用於不飽和聚酯樹脂之核殼型橡膠及無機/有機核殼型顆粒添加劑
7. 反應性微膠顆粒之合成及其對苯乙烯/不飽和聚酯/反應性微膠顆粒三成份系統之體積收縮、內部可染色性、聚合固化樣品微觀結構及機械性質之研究
8. 奈米級及次微米及核殼型橡膠添加劑及蒙特鈉石黏土對苯乙烯/不飽和聚酯/特用添加計三成份系之聚合固化反應動力及玻璃轉移溫度之影響
9. 反應性微膠顆粒型抗收縮劑、奈米級核殼型橡膠增韌劑及蒙特納石黏土對苯乙烯/不飽和聚酯/特用添加劑三成份系之聚合固化反應動力及玻璃轉移溫度之影響研究
10. 奈米有機材料之研究
11. 鎳金屬殼層披覆正十八烷微膠囊之製備與研究
12. 聚乙烯醇掺混量對高分子分散型微膠囊化液晶物性之影響
13. 有機薄膜電晶體及其閘極絕緣層表面處理技術之研究
14. 4,4’-氧雙鄰苯二甲酸酐及環氧樹脂交聯磺酸化聚乙烯醇用於質子交換膜燃料電池之研究
15. 低溫鋁擴散於氫化非晶矽層形成p型膜層及氫化氮化矽應用於矽晶片鈍化之研究
 
系統版面圖檔 系統版面圖檔