(3.238.130.97) 您好!臺灣時間:2021/05/14 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林福仁
研究生(外文):Fu-jen Lin
論文名稱:以不同高分子碳源及觸媒合成奈米碳管之研究及其純化效果之討論
論文名稱(外文):The Study of Synthesis Carbon Nanotubes from Difference Carbon Sources and Catalysts and the Effect of Purification Processes
指導教授:顏怡文
指導教授(外文):Yee-wen Yen
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:108
中文關鍵詞:奈米碳管流體化床化學氣相沉積
外文關鍵詞:carbon nanotubesfluidized bedCVD
相關次數:
  • 被引用被引用:3
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管具有優異的機械、電性、光學和化學等特殊性質特性,在目前的材料研究領域上站有重要的地位。以目前的商業生產技術,主要包括了雷射蒸發法(laser vaporization)以及化學氣相沉積法(chemical vapor deposition,CVD),Wei等人更藉由化學氣相沉積法以及流體化床的結合產生新式的化學氣相沉積-流體化床法(Chemical Vapor Deposition-Fluidized Bed, CVD-FB),以此方法增加化學氣相沉積法的產率。
奈米碳管具有優異的機械、電性、光學和化學等特殊性質特性,在目前的材料研究領域上站有重要的地位。以目前的商業生產技術,主要包括了雷射蒸發法以及化學氣相沉積法,Wei等人更藉由化學氣相沉積法以及流體化床的結合產生新式的化學氣相沉積-流體化床法,以此方法增加化學氣相沉積法的產率。
在相關文獻中已經有提到利用CVD-FB以高分子為原料進行反應,在通入H2/Ar混合氣體進行反應之後,可成功獲得奈米碳管。本實驗利用在型設計的三段式CVD-FBR為反應器,PE、PP以及PET做為碳源,並且以Fe(NO3)3、FeCl3、NiCl2觸媒進行反應,在反應過後經由讓氧化、酸洗以及退火的純化步驟,得到提純的奈米碳管,以SEM, TEM以及Raman等儀器做分析,將自備的奈米碳管以及各種參數做比之後,發現高分子的種類並不影響碳管的微結構,而是影響整體樣品的雜質程度,此種因素尚且牽涉到高分子的化學結構、熱穩定性以及粒徑大小;而金屬觸媒的種類才是影響碳管結構的主要因素,以鐵為觸媒的系統,其碳管直徑較為粗大,且容易有粗大的碳管出現,而以鎳為觸媒的系統則的管徑較為細小,另外在鹽類基上的差異,以硝基為主的系統可生成較為筆直的碳管,而以氯基為主的系統所生成的碳管則皆為扭曲。
Carbon nanotubes (CNTs) is special empty tube structure composed of single or multi-layer graphite. Due to CNTs’ machinic, electric conduction, thermal conduction chemical and magnetic properties, it is one of most significant studies in material science. Arc discharge, laser vaporization and CVD are three main produce ways at present. In order to increase the production efficiency, Wei al. introduce CVD-FBR to synthesize CNTs and generated CNTs successfully.
In this study, different carbon sources (PE, PP and PET) and catalysts (Fe(NO3)3, FeCl3 and NiCl2) were used to synthesize CNTs by CVD-FBR. after reaction for 1 Hr, as growth CNTs were obtained. For purification process, a serious steps such as thermal oxidizing, acidic washing, annealing were needed.
Under SEM and TEM examining, CNTs can be observed easily in all samples. And the effect of purification process is significant by comparison the Raman spectrums between different purification stages. In a overall discussion. It was founded that carbon sources do not influence the morphology of CNTs but affect purity of CNTs mainly. And catalysts are the most important key for the morphology of CNT in microstructure. When using Fe as catalyst, CNTs are more thick using Ni as catalyst. And using NO3- salt as catalyst, CNTs are more curved then using Cl- salt as catalyst.
目錄
中文摘要I
英文摘要II
目錄III
圖目錄V
表目錄XI

第一章 前言1
第二章 文獻回顧2
2.1奈米碳管的起源2
2.2 奈米碳管的結構以及性質4
2.2.1奈米碳管之結構4
2.2.2力學性質 10
2.2.3電學性質 11
2-2.4其他性質12
2.3奈米碳管的應用及發展13
2.4奈米碳管的製程 15
2.4.1電弧法(arc method) 15
2.4.2雷射蒸發法(laser vaporization) 16
2.4.3化學氣相沉積法(chemical vapor deposition,CVD16
2.4.4化學氣相沈積-流體化床(CVD-FB) 18
2.4.5 化學氣相沈積-流體化床中奈米碳管的生成機構21
2.4.6 其他方法22
2.5奈米碳管的純化方式24
2.6 奈米碳管之性質測試27
2.6.1穿透式電子顯微鏡對奈米碳管之分析27
2.6.2 拉曼光普對奈米碳管之分析 31
第三章 實驗方法34
3.1 流體化床反應器34
3.2 碳源粉體製備35
3.3碳管的製備36
3.4 自製奈米碳管的純化37
3.5 儀器分析38
第四章 結果與討論40
4.1 以不同碳源與觸媒製成奈米碳管之結果40
4.2 奈米碳管純化步驟之討論46
4.2.1 熱種分析與熱氧化處理46
4.2.2 酸洗與退火處理57
4.2.3 純化過程的整體呈現59
4.3 以不同高分子碳源製成奈米碳管之結果比較與討論69
4.3.1 以PE為碳源生成碳管之結果比較69
4.3.2 以PP為碳源生成碳管之結果比較72
4.3.3 以PET為碳源生成碳管之結果比較 75
4.3.4不同高分子碳源生成奈米碳管之综合討論78
4.4 以不同觸媒製成奈米碳管之比較與討論79
4.4.1 以Fe(NO3)3為觸媒生成碳管之結果比較79
4.4.2 以FeCl3為觸媒生成碳管之結果比較80
4.4.3 以NiCl2為觸媒生成碳管之結果比較82
4.4.4以之不同觸媒生成奈米碳管之综合討論83
第五章 結論 86
第六章 參考文獻88

圖目錄
圖2.1 Iijima所拍攝的奈米碳管之HRTEM影像3
圖2.2奈米碳管立體結構示意圖 3
圖2.3 (a)石墨結構示意圖;(b)鑽石結構示意圖;(c)C60結構示意圖;(d)奈米碳管結構示意圖7
圖2.4 石墨層以及奈米碳管中共軛雙鍵結構7
圖2.5 (a)單壁奈米碳管;(b)多壁奈米碳管8
圖2.6 多層奈米碳管堆疊方式:(a)coaxial cicular cylinder model ; (b)coaxial polygonized cylindrical model ; (c)scroll model8
圖2.7三個奈米碳管組成的T型結構9
圖2.8奈米碳管捲曲時的對稱性9
圖2.9 奈米碳管捲曲時的對稱性[4]:(a)扶手型奈米碳管(armchair SWCNT);(b)鋸齒型奈米碳管(zigzag SWCNT);(c)螺旋型奈米碳管(chiral SWCNT)10
圖2.10 奈米碳管中,A-B效應示意圖 12
圖2.11 電弧法16
圖2.12 雷射蒸發法16
圖2.13 典型的化學氣相沉積法18
圖2.14 Fei Wei自行研發的高產量CVD-FBR19
圖2.15 兩段式的化學氣相流體化床反應器 19
圖2.16 奈米碳管變化層級示意圖 21
圖2.17 奈米碳管之模型(a)底部成長模式(b)尖端成長模式22
圖2.18 典型的CVD製成奈米碳管的TEM影像27
圖2.19 多壁奈米碳管的HR-TEM影像28
圖2.20 奈米碳管照射圖與石墨層之間的關係示意圖 29
圖2.21 (a)單根的多壁奈米碳管TEM影像與繞射圖;(b)同一區域的HR-TEM影像30
圖2.22 單壁奈米碳管束的TEM影像與電子繞射圖31
圖2.23 (a) 單壁奈米碳管不同振動模式對應的拉曼光譜;(b) 拉伸振動模式(G-模式);(c)缺陷振動模式(D-模式);(d) 徑向呼吸模式(RBM-模式)32
圖 3.1 三段式反應器置示意圖34
圖 3.2 實驗裝置示意圖34
圖3.3 碳管製備流程圖37
圖3.4 自備的碳管純化流程圖 38
圖4.1 樣品1之SEM影像41
圖4.2 樣品2之SEM影像41
圖4.3 樣品3之SEM影像42
圖4.4 樣品4之SEM影像42
圖4.5 樣品5之SEM影像43
圖4.6 樣品6之SEM影像43
圖4.7 樣品7之SEM影像44
圖4.8 樣品8之SEM影像44
圖4.9 樣品9之SEM影像45
圖4.10 樣品1中奈米碳管團塊45
圖4.11. sampe 5 中奈米碳管團塊46
圖4.12 樣品1 之TGA圖49
圖4.13 樣品2 之TGA圖49
圖4.14 樣品3 之TGA圖49
圖4.15 樣品4 之TGA圖50
圖4.16 樣品5之TGA圖50
圖4.17 樣品6之TGA圖50
圖4.18 樣品7之TGA圖51
圖4.19 樣品8之TGA圖51
圖4.20 樣品9之TGA圖51
圖4.21 樣品1 經480 oC過熱氧化後,表面金屬觸媒球化52
圖4.22 圖4.21局部放大52
圖4.23 樣品1 中經540 oC熱處理過後,奈米碳管全數氧化,只剩下鐵的氧化物53
圖4.24 樣品1中經540 oC熱處理過後之EDS結果53
圖4.25 樣品1中掩埋的碳管因熱氧化過程而部份顯露出來54
圖4.26樣品3 中經440 oC熱處理過後顯露出部分奈米碳管以及球化的金屬觸媒氧化物54
圖4.27樣品3 中經560 oC熱處理過後,奈米碳管全數氧化,只剩下鎳的氧化物55
圖4.28樣品3 中經540 oC熱處理過後之EDS結果55
圖4.29 在熱處理過程中發現的氧化鐵一些特殊型態;(a)蜂巢狀成長;(b)稻桿狀成長56
圖4.30 在熱處理過程中發現的氧化鎳的特殊氧化型態56
圖4.31樣品在酸洗過程之後,去除金屬球化觸媒 57
圖4.32樣品之SEM影像
圖4.33樣品之(a)TEM影像;(b)電子繞射圖58
圖4.34 以PE-Fe(NO3)3製成奈米碳管在純化前後之SEM影像對照以及Raman分析之整理;(a)樣品1之SEM影像;(b)樣品10 之SEM影像;(c)三個階段之Raman分析60
圖4.35 以PE-FeCl3製成奈米碳管在純化前後之SEM影像對照以及Raman分析之整理;(a)樣品2之SEM影像;(b)樣品11 之SEM影像;(c)三個階段之Raman分析61
圖4.36 以PE-NiCl2製成奈米碳管在純化前後之SEM影像對照以及Raman分析之整理;(a)樣品3之SEM影像;(b)樣品12 之SEM影像;(c)三個階段之Raman分析62
圖4.37 以PP-Fe(NO3)3製成奈米碳管在純化前後之SEM影像對照以及Raman分析之整理;(a)樣品4之SEM影像;(b)樣品13 之SEM影像;(c)三個階段之Raman分析63
圖4.38 以PE-FeCl3製成奈米碳管在純化前後之SEM影像對照以及Raman分析之整理;(a)樣品5之SEM影像;(b)樣品14 之SEM影像;(c)三個階段之Raman分析64
圖4.39 以PE-NiCl2製成奈米碳管在純化前後之SEM影像對照以及Raman分析之整理;(a)樣品6之SEM影像;(b)樣品15 之SEM影像;(c)三個階段之Raman分析65
圖4.40 以PET-Fe(NO3)3製成奈米碳管在純化前後之SEM影像對照以及Raman分析之整理;(a)樣品7之SEM影像;(b)樣品16 之SEM影像;(c)三個階段之Raman分析66
圖4.41 以PET-FeCl3製成奈米碳管在純化前後之SEM影像對照以及Raman分析之整理;(a)樣品8之SEM影像;(b)樣品17 之SEM影像;(c)三個階段之Raman分析67
圖4.42 以PET-NiCl2製成奈米碳管在純化前後之SEM影像對照以及Raman分析之整理;(a)樣品9之SEM影像;(b)樣品18之SEM影像;(c)三個階段之Raman分析68
圖4.43 PE系列SEM影像比較;(a)樣品10之SEM影像;(b)樣品11之SEM影像;(c)樣品12之SEM影像70
圖4.44 PE系列之Raman分析70
圖4.45樣品10 之TEM影像71
圖4.46樣品11 之TEM影像71
圖4.47樣品12 之TEM影像72
圖4.48 PP系列SEM影像比較;(a)樣品13之SEM影像;(b)樣品14之SEM影像;(c)樣品15之SEM影像73
圖4.49 PP系列之Raman分析73
圖4.50樣品13 之TEM影像74
圖4.51樣品14 之TEM影像74
圖4.52樣品15之TEM影像75
圖4.53 PET系列SEM影像比較;(a)樣品16之SEM影像;(b)樣品17之SEM影像;(c)樣品18之SEM影像76
圖4.54 PET系列之Raman分析76
圖4.55 樣品16 之TEM影像77
圖4.56 樣品17 之TEM影像77
圖4.57 樣品18 之TEM影像78
圖4.58 Fe(NO3)3系列SEM影像比較;(a)樣品10之SEM影像;(b)樣品13之SEM影像;(c)樣品16之SEM影像79
圖4.59 Fe(NO3)3系列之Raman分析80
圖4.60 FeCl3系列SEM影像比較;(a)樣品11之SEM影像;(b)樣品14之SEM影像;(c)樣品17之SEM影像81
圖4.61 FeCl3系列之Raman分析81
圖4.62 NiCl2系列SEM影像比較;(a)樣品12之SEM影像;(b)樣品15之SEM影像;(c)樣品 18之SEM影像82
圖4.63 NiCl2系列之Raman分析83
圖4.65樣品14中發現粗大碳管之TEM影像84
圖4.62 樣品11中扭曲管壁之HRTEM圖85

表目錄
表2.1 奈米碳管特性整理 13
表2.2 奈米碳管的能應用範圍 14
表2.3 甲烷和不同催化劑反應之後所得到的產物種類 17
表2.4 常見的物理性分離奈米碳管方式 25
表2.5 常見的化學性分離奈米碳管方式 26
表3.1 反應粉體配量表以及對應生成的奈米碳管樣品編號35
表3.2 實驗藥品清單35-36
表3.3 各種樣品中的流體化流量36
表 3.4自備的奈米碳管熱氧化溫度以及純化後樣品編號38
表3.5 分析儀器列表39
表4.1 各組系統純化前後ID/IG比值列表69
表4.2 各個純化過後sample之Raman分析值以及直徑比較84
1.T. A. Edison, US Patent 470,925 (1892).
2.S. Iijima , “Helical microtubules of graphitic carbon”, Nature, Vol. 354, PP. 56-58 (1991).
3.H. W. Kroto, J. R. Heath, S. C. O’Brien, R.F. Curl, R.E. Smalley,“C60: Buckminsterfullerene”, Nature, Vol. 318, pp.162(1985).
4.維基百科,http://en.wikipedia.org/wiki/Carbon_nanotube#Discovery (2006)
5.K. T. Lau, D. Hui, “The revolutionary creation of new advanced materials—carbon nanotube composites”, Composites: Part B, Vol. 33, pp. 263-277(2002).
6.匡元生化科技,http://www.cbt.com.tw/0300.html (2006)
7.彭志維,“雜亂方向的多層奈米碳管薄膜之場發射特性”,國立清華大學物理學系碩士論文 (2003)。
8.成會明,”奈米碳管”,五南圖書出版股份有限公司。
9.美國密歇根州立大學, http://www.pa.msu.edu/cmp/csc/nanotube.html (2008)
10.http://physicsworld.com/cws/article/print/19746/1/pwpia1_07-04 (2008)
11.黃明德,”利用化學氣相沉積法在流體化床反應器中以高分子合成奈米碳管”,國立台灣科技大學碩士論文(2006)。
12.D. He, T. Zhao, Y. Liu, J. Zhu, G. Y. and L. Ge,” he effect of electric current on the synthesis of single-walled carbon nanotubes by temperature controlled arc discharge”, Diamond and Related Materials, Vol. 16, PP. 1722-1726 (2007).
13.F. Kokai, K. Takahashi, D. Kasuya, T. Ichihashi, M. Yudasaka and S. Iijima,” Synthesis of single-wall carbon nanotubes by millisecond-pulsed CO2 laser vaporization at room temperature”, Chemical Physics Letters, Vol. 332, PP. 449-454 (2000).
14.N. Braidy, M. A. El Khakani and G. A. Botton, ” Effect of laser intensity on yield and physical characteristics of single wall carbon nanotubes produced by the Nd:YAG laser vaporization method”, Carbon, Volume 40, PP. 2835-2582 (2002).
15.D. Nishide, H. Kataura, S. Suzuki, S. Okubo and Y. Achiba, ” Growth of single-wall carbon nanotubes from ethanol vapor on cobalt particles produced by pulsed laser vaporization”, Chemical Physics Letters, Vol. 392, PP. 309-313 (2004).
16.N. Inami, M. A. Mohamed, E. Shikoh and A. Fujiwara,” Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method”, Science and Technology of Advanced Materials, Vol. 8, PP. 292-295 (2007).
17.T. H. Fang, W. J. Chang, D. M. Lu and W. C. Lien,” Effects of gas composition on the growth of multi-walled carbon nanotube”, Applied Surface Science, Vol. 253, PP.8749-8753 (2007).
18.T. Inoue, I. Gunjishima and A. Okamoto,” Synthesis of diameter-controlled carbon nanotubes using centrifugally classified nanoparticle catalysts”, Carbon, Vol. 45, PP. 2164-2170 (2007).
19.台南科技大學,http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ ch8.htm (2008)
20.W .Kratschmer, L. D. Lamb, K . Fostiropoulos, “C60: a new form of carbon”, Nature, Vol. 347, PP. 354-358 (1990).
21.Y. Wang, F. Wei, G. S. Gu, H. Yu, “Agglomerated carbon nanotubes and its mass production in a fluidized-bed reactor”, Physica B: Condensed Matter, Vol. 323, PP. 327-329 (2002).
22.F. Wei, C. Huang, Y. Wang, “Fluidization of carbon nanotubes”, China Particuology, Vol.3, PP.40-41 (2005).
23.H. Yu, Q. Zhang, Q. F. Zhang, Q. Wang, G. Q. Ning, G. H. Luo, F. Wei, “Effect of the reaction atmosphere on the diameter of single-walled carbon nanotubes produced by chemical vapor deposition”, Carbon, Vol. 44, PP. 1706-1712 (2006).
24.H. Yu, Z. F. Li, G. H. Luo, F. Wei, “Growth of branch carbon nanotubes on carbon nanotubes as support”, Diamond and Related Materials, Vol.15, PP. 1447-1451 (2006).
25.Q. Zhang, W. Z. Qian, Q. Wen, Y. Liu, D. Z. Wang, F. Wei, “The effect of phase separation in Fe/Mg/Al/O catalysts on the synthesis of DWCNTs from methane”Carbon, Vol. 45, PP. 1645-1650 (2007).
26.F. Wei, Q. Zhang, W. Z. Qian, H. Yu, Y. Wang, G. H. Luo, G. H. Xu, D.Z. Wang,” The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space–time analysis”, Powder Technology, Vol. 183, PP. 10-20(2008).
27.W. Z. Qian, T. Liu, Z. W. Wang, F. Wei, Z.F. Li, G. H. Luo, Y. D. Li, “Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor”, Vol. 260, PP. 223-226 (2004)
28.Y. W. Yen, M. D. Huang, F. J. Lin, ” Synthesize carbon nanotubes by a novel method using chemical vapor deposition-fluidized bed reactor from solid-stated polymers”, Diamond and Related Materials, vol. 17, pp. 567-570(2008).
29.R. Xiang, G. H. Luo, W. Z. Qian, Q. Zhang, Y. Wang, F. Wei, Q. Li, A.Y. Cao, “Encapsulation, compensation, and substitution of catalyst particles during continuous growth of carbon nanotubes”, Adv. Mater. Vol. 19,PP.2360–2363 (2007).
30.Q. Zhang, W. P. Zhou,W .Z. Qian, R. Xiang, J. Q. Huang, D. Z. Wang, F.Wei, “Synchronous growth of vertically aligned carbon nanotubes with pristine stress in the heterogeneous catalysis process”, J. Phys. Chem.Vol. 110, PP. 14638–14643 (2007).
31.Y. Hao, Q.F. Zhang, F. Wei, W.Z. Qian, G.H. Luo, “Agglomerated CNTs synthesized in a fluidized bed reactor: agglomerate structure and formation mechanism”, Carbon, Vol. 41, PP. 2855–2863 (2003).
32.徐逸明,“化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究”,國立成功大學化學工程研究所博士論文 (2001)。
33.G. Z. Chen, X. Fan, A. Luget, Milo S. P. Shaffer, D. J. Fray and A. H. Windle,” Electrolytic conversion of graphite to carbon nanotubes in fused salts”, Journal of Electroanalytical Chemistry, Vol. 446, PP. 1-6 (1998).
34.A. T. Dimitrov, G. Z. Chen, I. A. Kinloch and D. J. Fray,” A feasibility study of scaling-up the electrolytic production of carbon nanotubes in molten salts”, Electrochimica Acta, Vol. 48, PP. 91-102 (2002).
35. Li YL, Yu YD,Liang Y.,” A navel method for synthesis of carbon nanotubes:low temperature solid pyrolysis”, Journal of Materials Research, Vol. 12, PP. 1687 (1997).
36.Li WZ, Xie SS, Qian LX,” Large-scale synthesis of aligned carbon nanotubes ” , Science, Vol. 271, PP.1701-1703 (1996).
37.J. Y. Huang, H. Yasuda, H. Mori, ”Highly curved carbon nanostructures produced by ball-milling”, Chem Phys Lett, Vol. 303, PP. 130-134 (2000).
38.Y. Chen, J. F. Gerald, L. T. CHadderton, et al, ” Nanoporous carbon produced by ball milling” appl phys lett, Vol. 74, PP. 2782 (1999).
39.Vander Wal RL, Ticich TM, Curtis VE, “Diffusion flame synthesis of single-walled carbon nanotubes”, Chem Phys Lett, Vol. 323, PP. 271 (2000).
40.F. H. Ko, C. Y. Lee, C. J. Ko, T. C. Chu, ” Purification of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel”, Carbon, Vol.43, PP. 727-733 (2005).
41.C. M. Chen, M. Chen, Y. W. Peng, C. H. Lin, L. W. Chang, C. F. Chen, “Microwave digestion and acidic treatment procedures for the purification of multi-walled carbon nanotubes”, Diamond and Related Materials, Vol.14, PP. 793-803 (2005).
42.H. Jia, Y. Lian, M. O. Ishitsuka, T.Nakahodo, Y. Maeda, T. Tsuchiya, T. Wakahara, T. Akasaka, “Centrifugal purification of chemically modified single-walled carbon nanotubes”, Science and Technology of Advanced Materials, Vol. 6, PP.571-581 (2005)
43.Y. Yang, L. Xie, Z. Chen, M. Liu, T. Zhu, Z. Liu,” Purification and length separation of single-walled carbon nanotubes using chromatographic method” Synthetic Metals, Vol. 155, PP. 155-160 (2005)
44.P. Chungchamroenkit, S. Chavadej, U. Yanatatsaneejit, B. Kitiyanan, “Residue catalyst support removal and purification of carbon nanotubes by NaOH leaching and froth flotation”, Separation and Purification Technology, Vol. 60 PP. 206-214 (2008).
45.T. Suzuki, S. Inoue, Y. Ando, “Purification of single-wall carbon nanotubes by using high-pressure micro reactor”, Diamond and Related Materials, Available online (2008).
46.S. H. Su, W. T. Chiang, Chun-Chang Lin, Meiso Yokoyama, ” Multi-wall carbon nanotubes: Purification, morphology and field emission performance”, Physica E: Low-dimensional Systems and Nanostructures, Available online (2007).
47.X. Liu, J. L. Spencer, A. B. Kaiser, W. M. Arnold,” Selective purification of multiwalled carbon nanotubes by dielectrophoresis within a large array “, Current Applied Physics, Vol.6, PP. 427-431 (2006).
48.N. Shah, S. Ma, Y. Wang, G. P. Huffman,” Semi-continuous hydrogen production from catalytic methane decomposition using a fluidized-bed reactor”, International Journal of Hydrogen Energy, Vol. 30, PP. 3315-3319 (2007)
49.F. R. García-García, M. Pérez-Cabero, D. M. Nevskaia, I. Rodríguez-Ramos, A. Guerrero-Ruiz, “Improving the synthesis of high purity carbon nanotubes in a catalytic fluidized bed reactor and their comparative test for hydrogen adsorption capacity”, Catalysis Today, Vol. 133-135, PP. 815-821 (2008)
50.L. E. Murr, K. F. Soto, “A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources”, Materials Characterization, Vol. 55, PP. 50-65 (2005).
51.陳立俊,”材料電子顯微鏡學”,國家實驗研究院儀器科技研究中心,台北(1990)。
52.K. Yang, H. Han, Xifeng Pan, Na Chen, Mingyuan Gu, ” The effect of chemical treatment on the crystallinity of multi-walled carbon nanotubes”, Journal of Physics and Chemistry of Solids, Vol. 69, PP. 222-229 (2008).
53.L. Henrard, A. Loiseau, C. Journet and P. Bernier, “Study of the symmetry of single-wall nanotubes by electron diffraction”, Vol. 13, PP. 661-669 (2000).
54.蔡淑慧,”奈米通訊”,第十二卷第二期,47-51頁(2005)。
55.Y. Ouyang, L. M. Cong, L. Chen, Q. X. Liu, Y. Fang, ”Raman study on single-walled carbon nanotubes and multi-walled carbon nanotubes with different laser excitation energies”, Physica E: Low-dimensional Systems and Nanostructures, Available online (2007).
56.X. Gui, J. Wei, K. Wang, W. Wang, R. Lv, J. Chang, F. Kang, J. Gu, D. Wu, “Improved filling rate and enhanced magnetic properties of Fe-filled carbon nanotubes by annealing and magnetic separation”, Materials Research Bulletin, Available online (2008).
57.C. M. Chen, Y. M. Dai, J. G. Huang, J. M. Jehng, “Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method”, Carbon, Vol. 44, 2006, PP. 1808-1820(2006).
58.Kong Bee Hong, Aidawati Azlin Binti Ismail, Mohamed Ezzaham Bin Mohd Mahayuddin, Abdul Rahman Mohamed, Sharif Hussein Sharif Zein,” Production of High Purity Multi-Walled Carbon Nanotubes from Catalytic Decomposition of Methane”, Journal of Natural Gas Chemistry, Vol. 15, PP. 266-270 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊