(3.226.72.118) 您好!臺灣時間:2021/05/13 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃昭棋
研究生(外文):Chao-chi Huang
論文名稱:成長微奈米結構氧化鈷薄膜暨應用於氣體感測器之研究
論文名稱(外文):The Study of Growth of Micro/Nanostructructural on Cobalt Oxide Thin Flims and Their Application for Gas Sensor
指導教授:周賢鎧
指導教授(外文):Shyankay Jou
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:87
中文關鍵詞:氧化鈷薄膜奈米結構氣體感測器
外文關鍵詞:cobalt oxidethin filmnanostructuregas sensor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:265
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本論文研究在氧化鋁基材上利用網印法塗佈高溫銀膠,經高溫燒結後作為電極,接著以真空磁控濺鍍法於其上成長鈷薄膜,再於不同氣氛下以加熱板直接加熱使其表面產生微奈米結構氧化鈷,以提高其比表面積,製成氣體感測器元件。
以SEM分析氧化鈷表面形貌得知,試片於水氣環境及乾燥空氣中加熱,氧化鈷表面形成細線狀與板狀奈米結構共存的情形,與試片於大氣環境中加熱主要為細線狀奈米結構有顯著之不同。以XRD分析氧化鈷之結構與成分可得,短時間加熱之試片其CoO之繞射峯較明顯,隨加熱時間之增長氧化鈷之Co3O4之繞射峯強度增強。
本論文完成氧化鈷氣體感測器於真空環境與氮氧混合氣下之性能測試,驗證以鈷薄膜直接加熱成長氧化鈷微奈米結構製備之氣體感測器之可行性。
Abstract
In this thesis, we deposited cobalt (Co) thin film by sputtering on Al2O3 substrate which was already coated with Ag electrode by screen printing. The Co films were heated in different atmospheres by using a hot plat, for growing the nanostructural cobalt oxide thin films with high specific surface area for gas sensor.
The morphology and structure were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Investigation by SEM showed the samples heated with flowing water vapor and dry air were composed of nanowires & nanowalls. The samples heated in normal air showed a morphology with mainly nanowires. Observation by XRD indicated that sample showed high CoO diffraction peak for short heating duration, and with of an increase the Co3O4 diffraction peak increase the heating duration was observed.
Gas sensing using nanostructural cobalt oxides was conducted. The experimental results proved that micro/nanostructure cobalt oxides grown by heating cobalt thin film can be use for gas sensor.
目錄
第一章 前言………………………………………………………………………... 1
第二章 文獻回顧
2-1 金屬氧化物半導體氣體感測器..................................................................... 2
2-1-1 金屬氧化物半導體型氣體感測器的感測機制................................ 2
2-1-2 金屬氧化物之缺陷特性及其Kroger-Vink表記法…………………3
2-1-3 非當量比性金屬氧化物之導電率與氧分壓之相關性…………… 5
2-1-4 氧化鈷之缺陷特性………………………………………………… 7
2-1-5 半導體氣體感測器之材料與選用………………………………… 9
2-2 氧化鈷薄膜與奈米結構製備………………………………………………10
2-2-1 氧化鈷性質……………………………………………………….. 10
2-2-2 薄膜製備…………………………………………………………...14
2-2-3 奈米結構種類……………………………………………………...15
2-2-4 加熱板法…………………………………………………………...16

第三章 實驗方法與步驟
3.1 實驗材料…………………………………………………………………….19
3.2 實驗儀器與裝置…………………………………………………………….19
3.3 實驗步驟…………………………………………………………………….20
3.3.1 試片準備及清洗……………………………………………………….20
3.3.2 感測器電極製作……………………………………………………….21
3.3.3 氧化鈷薄膜製備……………………………………………………….22
3.3.4 氧化鈷感測層奈米結構製備………………………………………….23
3.3.5 奈米結構之形貌分析-SEM………………………………………….26
3.3.6 奈米結構之成份分析-XRD…………………………………………27
3.3.7 氧化鈷感測器之靈敏度量測與比較………………………………….27

第四章 實驗結果與討論
4-1 實驗參數之比較與決定……………………………....………...…..……….29
4-1-1 濺鍍參數之選擇………………………………....………...………….29
4-1-2 不同電極製備法之比較………………………………………………33
4-1-3 不同溫度加熱之試片形貌分析………………………………………37
4-2 氧化鈷奈米結構之形貌分析……………………………………..…………40
4-2-1 以300℃加熱三小時之氧化鈷薄膜形貌……………………….…….40
4-2-2 以300℃加熱二十四小時之氧化鈷薄膜形貌………………….…….46
4-2-3 以300℃加熱四十八小時之氧化鈷薄膜形貌………………….…….51
4-2-4 不同實驗參數之形貌比較結果………………………………………57
4-3 氧化鈷奈米結構之成分分析…………………………………………..…....60
4-3-1 as deposit鈷薄膜之XRD分析………………………………………..60
4-3-2 以300℃加熱三小時之氧化鈷薄膜成份分析………………….…….63
4-3-3 以300℃加熱二十四小時之氧化鈷薄膜成份分析…………….…….64
4-3-4 以300℃加熱四十八小時之氧化鈷薄膜成份分析…………….…….66
4-3-5 相同氣氛不同加熱時間之氧化鈷薄膜成份分析……………………68
4-3-6 以500℃加熱二十四小時之氧化鈷薄膜成份分析………………….72
4-3-7 不同實驗參數之成分比較結果………………………………………72
4-4 具奈米結構之氧化鈷氣體感測器之性能分析………………………….….75
4-4-1 不同參數製備之氧化鈷感測器靈敏度之比較………………………75
4-4-2 不同參數製備之氧化鈷感測器活化能之比較………………………81

第五章 結論………………………………………………………………………..86
參考文獻
〔1〕楊宗樺、林鴻明、章俊隆、季松平,半導體氣體感測器與特性自動化測試系統,電機月刊第十二卷第六期,2002,p.232-240。
〔2〕G. Korotcenkov, Review Metal oxides for Solid-State Gas Sensor: What Determines Our Choice?, Materials Science and Engineering B 139 (2007) 1-23.
〔3〕M. Aronniemi, J. Saino, J. Lahtinen, Characterization and Gas-Sensing Behavior of an Iron Oxide Thin Film Prepared by Atomic Layer Deposition, Thin Solid Films, 516(2008)6110-6115.
〔4〕林鴻明、曾世杰,奈米半導體材料之氣體感測性質,工業材料157期,2000,p.163-169。
〔5〕T. Yu, Y. Zhu, X. Xu, K. Yeong, Z. Shen, P. Chen, C. Lim, Substrate-Friendly Synthesis of Metal Oxide Nanostructure Using Hotplate, Small 2 (2006), 80-84.
〔6〕T. Yu, Y. Zhu, X. Xu, Z. Shen, P. Chen, C.-T. Lim, J. Thong, C.-H. Sow, Controlled Growth and Field-Emission Properties of Coblat Oxide Nanowalls, Advanced Materials 17 (2005), 1595-1599.
〔7〕魏炯權 編著,電子陶瓷材料,全華,台北市,2004,p.9-2~9-5。
〔8〕郭東昊 編著,電子陶瓷授課講義,國立台灣科技大學,台北市,2008,p. 8-18。
〔9〕G. M. Raynaud and F. Morin, Modeling of Complex Point Defect in Transition Metal Compounds, Journal of Physical Chemistry of Solids 46 (1985), 1371-1375.
〔10〕邱碧秀 編著,電子陶瓷材料,徐氏基金會,台北市,1988,p.366-373。
〔11〕http://www.webelements.com/cobalt/compounds.html- cobalt compounds.
〔12〕http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_2/basics/b2_1_6.html- ionic crystals.
〔13〕J. Wollenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hidenbrand, H. Bottner, I. Eisele, Cobalt Oxide Based Gas Sensors on Silicon Substrate for Operation at Low Temperatures, Sensors and Actuators B 93(2003)442-448.
〔14〕 S. Choi, B. Min, Co3O4-Based Isobutane Sensor Operating at Low Temperature, Sensors and Actuators B 77(2001)330-334.
〔15〕 J. Jansson, M. Skoglundh, E. Fridell, and P. Thormahlen, A Mechanistic Study of Low Temperature CO Oxidation over Cobalt Oxide, Topics in Catalysis, 16-17(2001)385-389.
〔16〕林宗榮,周澤川,蔡志明,觸媒物質在化學感測器上之應用,化學技術第12卷第7期,2004,p.135-145。
〔17〕H. Nam, T. Sasaki, and N. Koshizaki, Optical CO Gas Sensor Using a Cobalt Oxide Thin Film Prepared by Pulsed Laser Deposition under Various Argon Pressure, Journal of Physical Chemistry B 110 (2006), 23081-23084.
〔18〕V. Mustat, E. Fortunato, A.M. Botelho do Rego, R. Monteiro, Sol-Gel Cobalt Oxide-Silica Nanocomposite Thin Film for Gas Sensing Applications, Thin Solid Film 516(2008)1499-1502.
〔19〕E. Comini, G. Faglia, M. Ferroni, G. Sberveglieri, and M. Sacerdoti, Structural and Electrical Characterization of Cobalt Oxide P-Type Gas Sensor, Sensors and Actuators B 107(2005)516-522.
〔20〕S. Chio, B. Min, Co3O4-Based Isobutane Sensor Operating at Low Temperatures, Sensors and Actuators B 77(2001)300-334.
〔21〕H. Yamaura, J. Tamaki, K. Moriya, N. Miura, and N. Yamazoe, Highly Selective CO Sensor Using Indium Oxide Doubly Promoted by Cobalt Oxide and Gold, Journal of the Electrochemical Society 144 (1997), L158-L160.
〔22〕S. Abe, U. Choi, K. Shimanoe, N. Yamazoe, Influence of Ball-Milling Time on Gas-Sensing Properties of Co3O4-SnO2 Composites, Sensors and Actuators, B 107(2005), 516-522.
〔23〕A. Martucci, D. Buso and M. Guglielmi, Optical Gas Sensing Properties of Silica Film Doped with Cobalt Oxide Nanocrystals, Journal of Sol-Gel Science and Technology 32 (2004), 243-246.
〔24〕H. Lee, J. Song, Y. Yoon, T. Kim, K. Kim, W. Choi, Enhancement of CO Sensitivity of Indium Oxide-Based Semiconductor Gas Sensor Through Ultra-Thin Cobalt Adsorption, Sensors and Actuators B 79(2001)200-205.
〔25〕M. Masahiko, F. Qiu, W. Shin, N. Izu, I. Matsumiya, N. Murayama, and S. Kanzaki, Thermoelectric CO Gas Sensor Using Thin-Film Catalyst of Au and Co3O4, Journal of The Electrochemical Society, 151 (2004), H7-H10.
〔26〕王世敏,許祖勛,傅晶 編著,奈米材料原理與製備,五南,台北市,2004,p.302-314。
〔27〕Y. Li, B. Tan, and Y. Wu, Freestanding Mesoporous Quasi-Crystalline Co3O4 Nanowire Arrays, Journal of the American Chemical Society 128 (2006), 14258-14259.
〔28〕Y. Li, B. Tan, and Y. Wu, Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability, Nano Letters 8 (2008), 265-270.
〔29〕T. Maruyama, T. Nakai, Cobalt Oxide Thin Films Prepared by Chemical Vapor Deposition from Cobalt(ΙΙ)Acetate, Solar Energy Materials 23 (1991), 25-29.
〔30〕D. L. Peng, T. J. Konon, K. Wakoh, T. Hibara, K. Sumiyama, Co Cluster Coalescence Behavior Observed by Electrical Conduction and Transmission Electron Microscopy, Applied Physics Letters 78 (2001), 1535-1537.
〔31〕D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, S. Q. Feng, Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid(SLS)Mechanism, Physica E 9(2001)305-309.
〔32〕H. Y. Dang, J. Wang, and S. S. Fan, The Synthesis of Metal Oxide Nanowires by Directly Heating Metal Samples in Appropriate Oxygen Atmospheres, Nanotechnology 14(2003)738-741.
〔33〕林志名,以磁控濺鍍法製備氧化鈰及摻雜釓與銀薄膜之電阻式氧氣感測器與性能比較,國立台灣科技大學碩士論文,2008,p.33-35。
〔34〕Joint Committee on Power Diffraction Standards Diffraction Data File, No. 15-0806(Co); 43-1004(CoO); 43-1003(Co3O4); 46-1212(Al2O3).
〔35〕P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxide, Wiley, Norway, 1972, p.240.
〔36〕L. D. Kadam, P. S.Patil, Thickness-Dependent Properties of Sprayed Cobalt Oxide Thin Films, Materials Chemistry and Physics 68 (2001) 225-232.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔