跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 08:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柴浣蘭
研究生(外文):Wan-lan Chai
論文名稱:澱粉/聚乳酸製備生物可分解性塑料與性質研究
論文名稱(外文):Preparation and Investigation of Biodegradable Blends of Nature Starch and/or Poly(lactic acid)
指導教授:葉正濤
指導教授(外文):Jen-taut Yeh
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:高分子系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:154
中文關鍵詞:聚乙烯澱粉馬來酸酐摻合生物可分解性聚乳酸三醋酸甘油酯再結晶SiO2-TiO2溶膠凝膠奈米組成物
外文關鍵詞:PolyethyleneStarchMaleic anhydrideBlendsBiodegradablePoly (lactic acid)triacetineplasticizing effectre-crystallizationSiO2-TiO2sol-gelnanocomposite
相關次數:
  • 被引用被引用:3
  • 點閱點閱:669
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要是針對泛用聚烯烴系高分子聚乙烯(Polyethylene, PE) 、改質聚乙烯與天然高分子澱粉(starch)之合膠、生物可分解性聚乳酸(Poly lactic acid, PLA)內摻混有機塑化劑---三醋酸甘油酯(Triacetine, TAc) 及無機性添加劑---二氧化矽與二氧化鈦,在不同掺混配方下所得之合膠的抗張性質、熱學性質、結晶行為、微結構及生物分解特性的研究討論。
研究中首先嘗試將低密度聚乙烯(low-density polyethylene, LDPE)與澱粉摻混吹製成生物可分解性薄膜。爲了增加疏水性LDPE與親水性澱粉之相容性,使用少量的起始劑---過氧化二異丙苯(Dicumyl peroxide, DCP),使馬來酸酐(Maleic Anhydride, MAH)先形成過氧化物,接枝(graft)於LDPE鏈上,形成相容劑LDPE-g-MAH。結果顯示,LDPE-g-MAH/starch薄膜成品之抗張性質明顯高於LDPE /starch薄膜成品。另一方面,當澱粉添加量達60 wt%時,LDPE-g-MAH/starch薄膜樣品經過12周之土壤分解試驗,其殘餘重量比例已接近40%,顯示分解率達60%。同樣地,在酵素分解測試後之薄膜樣品經掃描式電子顯微鏡(Scanning electron microscope, SEM)觀察發現,當酵素分解時間增加至第6周時,LDPE-g-MAH/starch合膠的整體結構已經被真菌分解至無法連續,可見分解作用相當明顯。 在吹膜加工方面,LDPE-g-MAH合膠最佳接枝配方為DCP起始劑含量0.3 wt%,MAH含量為10 wt%;此LDPE-g-MAH合膠經滴定法測得之接枝率為0.88 wt%。更進一步的研究發現,LDPE-g-MAH/starch合膠吹膜成形之最佳成膜溫度為165℃,此溫度所吹製的LDPE-g-MAH /starch薄膜成品,於澱粉添加量增至70wt%時,抗張強度可高於6MPa以上、斷點延伸率可維持100 %以上。除此之外,由LDPE-g-MAH/starch薄膜成品經FTIR結構分析結果得到,羰基特徵峰的出現證實了LDPE確實與MAH產生接枝反應;starch之-OH基與LDPE-g-MAH相容劑之MAH極性基也確實發生反應而產生酯基。另外,在熔融結晶過程中,澱粉的存在及MAH接枝在LDPE上,會破壞LDPE分子鏈結構之規整度,並使LDPE分子鏈間之空間增大,抑制了LDPE分子的結晶,因此造成LDPE-g-MAH/starch合膠在熔融後結晶時產生較不完美的LDPE結晶,所以使得LDPE-g-MAH/starch合膠具有較LDPE/starch合膠為低的Tm及△Hm值。
為開發生物全降解性材料,本研究接著以目前最重要的生物可降解性材料聚乳酸(PLA)為基材,嘗試製備對於環境友善的綠色產品。但因PLA結晶速率慢、水解及質脆等特性,不利於吹膜加工,因此本研究選用有機性塑化劑三醋酸甘油酯來改善PLA的脆性及加工便利性。研究中發現,當PLA樣品在掃描升溫速率小於40oC/min時產生明顯的再結晶峰﹔但在≧40oC/min時,再結晶峰變小,甚至消失不見。由微差掃描熱分析儀(Differential scanning calorimeter, DSC)及動態機械分析儀(Dynamic mechanical analyzer, DMA)分析結果發現,PLAxTAcy樣品之Tg及Tm隨TAc含量增加而明顯下降。在PLAxTAcy樣品的tanδ曲線上發現,於-80至-20 oC間有一新的轉移峰。由DSC、WAXD及DMA都可以看出,PLA及PLAxTAcy樣品在熱壓後冷卻至室溫的狀況下無法結晶。令人驚訝,由WAXD可以看出緩冷的PLAxTAcy樣品有明顯α-form的PLA再結晶峰產生,甚至於在TAc添加量大於30 wt%時可看到不完美的β-form的PLA再結晶峰。抗張性質表現上,當添加0至25 wt%的TAc至PLA後,抗張強度(σf)明顯的下降但斷點延伸率(εf)則上升﹔但當添加25至30 wt%的TAc至PLA後,σf及εf皆具幅下降。在型態學上,在添加適量的TAc進PLA後,以SEM可觀察到,PLAxTAcy樣品由原先的脆性破壞斷面轉變成具延展性的斷面。
在改善了PLA的脆性之後,在以PLAxTAcy合膠吹膜後得到的薄膜,在撕裂強度的性質上並不理想,未進一步改善其韌性與熱學性質,本研究使用丙烯酸(Acrylic acid, AA)接枝於PLA鏈上,形成PLA-g-AA合膠,再利用溶膠凝膠法(sol-gel method)及熔融摻混的方式,與自製之奈米SiO2-TiO2混成材摻合,製備PLA/SiO2-TiO2及PLA-g-AA/SiO2-TiO2合膠。經由傅立葉轉換紅外線光譜儀 (Fourier Transform –Infrared Spectroscopy)分析結果證明,AA與PLA分子產生鍵結,並與SiO2-TiO2混成材形成Si-O-C及Ti-O-C的鍵結。29Si固態核磁共振(Solid state Nuclear Magnetic Resonance, NMR)光譜儀分析結果顯示,在矽氧烷(siloxane)所形成的無機網狀交聯的幾何結構主要皆為Q3及Q4(其Qn之n定義為矽氧烷基完全水解縮合變成Si-O-Si的結構之數目)。另一方面,當SiO2-TiO2混成材添加量為10 wt%時,PLA/SiO2-TiO2及PLA-g-AA/SiO2-TiO2合膠的抗張強度(σf)與玻璃轉移溫度(Tg)最高﹔若添加過多的SiO2-TiO2混成材於PLA中,會使PLA與SiO2-TiO2發生相分離的現象。另外,PLA-g-AA/SiO2-TiO2合膠的熱性質與抗張性質已較PLA/SiO2-TiO2合膠改善許多,此乃歸因於丙烯酸之-COOH官能基(carboxylic acid group)脫水後,可與Si-OH及Ti-OH形成作用力較強的Si-O-C及Ti-O-C鍵結,因此在相同含量之PLA/SiO2-TiO2合膠中,有接枝AA較未接枝AA之PLA/SiO2-TiO2合膠有較高的抗張強度(σf)。
The aim of this work is to prepare biodegradable blends of low-density polyethylene (LDPE) and starch, PLA and inorganics and organic additives. Systematically investigations of the crystallization, microstructure, thermal and tensile properties of those blends are reported. First, the aim of this work is to prepare biodegradable blends of low-density polyethylene (LDPE) and starch that can be used for film blowing. In order to increase the compatibility between LDPE and starch, maleic anhydride (MAH) was used to graft onto the LDPE molecules (LDPE-g-MAH). The �綪 and �挲 values of the LDPE-g-MAH/starch specimen increase consistently as their MAH grafting percentages increase from 0 to 0.88 wt%, however, reduce significantly as their MAH grafting percentages increase from 0.88 to 0.92 wt%. As evidenced by FTIR analysis, about 0.88 wt% of MAH was grafted onto LDPE after choosing 0.3 wt% DCP and 10 wt% MAH as the optimum grafting composition for film-blowing the LDPE-MAH/starch specimens. In fact, by using the optimal mold temperature at 165℃, the �綪 and �挲 values of LDPE-g-MAH/starch blown film containing 70 wt % starch are more than 6MPa and 100%, respectively. Relative ductile morphology was found on the fracture surface of the LDPE/-g-MAH/starch specimen, wherein many drawn LDPE fibrils were found surrounding small cavities and/or residual starch particles. However, barely any drawn LDPE was found on the fracture surfaces of the LDPE/starch specimens. As evidenced by FTIR analysis, formation of ester carbonyl groups by reaction between carboxylic acid groups of LDPE-MAH molecules and hydroxyl groups of starch particles did occur during the reactive extrusion processes of LDPE-g-MAH/starch specimens that can significantly improve the interfacial adhesion between LDPE molecules and starch particles. Presumably, the improved tensile properties and the drawn LDPE fibrils found surrounding the starch cavities and residual starch particles of LDPE/-g-MAH/starch specimens are attributed to the improved interfacial adhesion between LDPE molecules and starch particles. Mechanical properties together with the soil and enzyme degradation tests of the LDPE/starch and LDPE-g-MAH/starch specimens were studied. After using the proper composition and processing condition, the �綪 and �挲 values of LDPE-g-MAH/starch blown film specimen are significantly higher than those of the LDPE/starch film specimens with the same starch contents. The biodegradation tests showed that most of the starch particles present in LDPE/starch and LDPE-g-MAH/starch specimens can be degraded within 6 weeks.
The magnitudes of re-crystallization exotherms of PLA specimens reduce and almost vanish at heating rates equal to or higher than 40℃/min. Both differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) measurements show that Tg and Tm values of PLAxTAcy specimens reduce significantly as their TAc contents increase. A new transition hump was observed on the tan δ curve of PLAxTAcy specimens at temperatures ranging from -80 to -20℃. The thermal, wide angle X-ray diffraction (WAXD) and DMA properties of PLA and PLAxTAcy series specimens suggest that PLA and PLAxTAcy series specimens can hardly crystallize by cooling the melt in room temperature. However, as evidenced by WAXD analysis, significant re-crystallization of �� form PLA crystals was found during the annealing processes of the PLAxTAcy series specimens. In fact, some “less perfect” form PLA crystals were found as the TAc contents of PLAxTAcy specimens reach 30 wt %. The values of tensile strength (σf) and elongation at break (εf) of PLAxTAcy specimens significantly reduce and increase, respectively, as their TAc contents increase from 0 to 25 wt. %. However, bothεf and σf values of PLAxTAcy specimens reduce abruptly as their TAc contents increase from 25 to 30 wt. %. As evidenced by scanning electron microscope (SEM) examinations, inherent brittle deformation behavior of the PLA specimen was successfully transformed into relatively ductile fracture behavior after blending sufficient but optimum amounts of TAc in PLA resins. Possible reasons accounting for this interesting re-crystallization, thermal, microstructure and tensile properties of PLAxTAcy specimens are proposed.
The silicic acid produced from sodium metasilicate hydrate and the titanium tetraisopropylate were chosen as the ceramic precursors for the modification of biodegradable polylactide (PLA) through an in situ sol-gel process and the melt blending method. In addition, the acrylic acid grafted polylactide (PLA-g-AA) was studied as an alternative to PLA. Hybrids were characterized by Fourier transform infrared spectroscopy, 29Si solid-state nuclear magnetic resonance (NMR), thermogravimetry analysis (TGA), scanning electron microscope (SEM), and Instron mechanical tester. Properties of the PLA-g-AA/SiO2-TiO2 hybrid were superior to those of the PLA/SiO2-TiO2 hybrid. This was because the carboxylic acid groups of acrylic acid acted as coordination sites for the silica-titania phase to allow the formation of stronger chemical bonds. 29Si solid-state NMR showed that Si atoms coordinated around SiO4 units were predominantly Q3 and Q4. The 10wt% SiO2-TiO2 content gave the maximum values of tensile strength and glass transition temperature in PLA/SiO2-TiO2 and PLA-g-AA/SiO2-TiO2 both since excess SiO2-TiO2 particles caused separation between the organic and inorganic phases.
中文摘要 I
英文摘要 IV
誌 謝 VII
目 錄 VIII

第一章 前言 1
第二章 文獻回顧 7
2.1熱塑性塑膠 7
2.2分解性高分子 10
2.3生物分解性高分子 13
2.3.1生物分解性高分子之特性 13
2.3.2生物分解性高分子之種類 16
2.4澱粉 24
2.4.1澱粉之特性 24
2.4.2澱粉的結構與基本性質. 24
2.4.3塑膠摻混澱粉相關研究. 28
2.5聚乳酸. 37
2.5.1聚乳酸之組成與特性. 37
2.5.2聚乳酸之合成. 40
2.6相容劑改質原理. 45
2.7塑化劑. 51
2.7.1泛用於業界之塑化劑. 51
2.7.2聚乳酸塑化相關研究. 54
2.8 溶膠凝膠法 58
2.9 生物分解性測定規範. 62
第三章 實 驗方法與步驟 66
3.1材料 66
3.2實驗儀器 68
3.3樣品製備 70
3.3.1 LDPE/starch共混系列樣品 70
3.3.2 PLA/TAc共混系列樣品 73
3.3.3 PLA-g-AA/SiO2-TiO2共混系列樣品 74
3.4樣品性質檢測 77
3.4.1 LDPE/starch共混系列樣品 77
3.4.2 PLA/TAc共混系列樣品 81
3.4.3 PLA-g-AA/SiO2-TiO2共混系列樣品 83

第四章 結果與討論 88
4.1低密度聚乙烯與生物可分解性澱粉掺製薄膜之應用 88
4.1.1 DCP起始劑含量與MAH含量對LDPE接枝MAH之影響 88
4.1.2 LDPE/starch薄膜樣品抗張性質探討 90
4.1.3 LDPE /starch合膠之吹膜性分析 93
4.1.4 LDPE /starch合膠之FTIR結構鑑定 96
4.1.5 LDPE/starch與LDPE-g-MAH/starch之熱學性質分析 100
4.1.6 LDPE/starch與LDPE-g-MAH/starch合膠之SEM表面型態觀察 103
4.1.7 LDPE/starch與LDPE-g-MAH/starch合膠之吸水性分析 105
4.1.8 LDPE/starch與LDPE-g-MAH/starch合膠之生物分解性分析
110
4.2 PLA/TAc合膠之塑化性質研究PLA/TAc共混系列樣品熱學性質分析 112
4.2.1 PLA/TAc共混系列樣品熱學性質分析 112
4.2.2 PLA/TAc共混系列樣品的廣角X光繞射(WAXD)性質分析 115
4.2.3 PLA/TAc共混系列樣品之動態機械性質分析(DMA) 118
4.2.4 PLA/TAc共混系列樣品之表面型態及抗張性質分析 122
4.3 PLA/SiO2-TiO2混成材料之製備與性質研究 125
4.3.1 PLA/SiO2-TiO2與PLA-g-AA/SiO2-TiO2共混系列樣品之傅利葉紅外光譜(FTIR)分析 125
4.3.2 PLA/SiO2-TiO2與PLA-g-AA/SiO2-TiO2共混系列樣品之固態核磁共振光譜儀分析 129
4.3.3 PLA /SiO2-TiO2與PLA-g-AA/SiO2-TiO2共混系列樣品之廣角X光繞射(WAXD)性質分析 132
4.3.4 PLA /SiO2-TiO2與PLA-g-AA/SiO2-TiO2共混系列樣品之SEM表面型態分析 134
4.3.5 PLA /SiO2-TiO2與PLA-g-AA/SiO2-TiO2共混系列樣品之熱性質分析 136
4.3.6 PLA/SiO2-TiO2與PLA-g-AA/SiO2-TiO2共混系列樣品之抗張性質分析 139

第五章 結 論 141
參考文獻 144
作者簡介 155
論文著述 156
1.洪瑞庭,塑膠加工技術與工程,高立圖書有限公司,1987年
2.塑膠資訊,1998,8(No.21)
3.G. J. L. Griffin, American Chemical Society,15,159(1974).
4.S. Bhatnagar, M. A., Hanna, Trans ASAE, 38,567(1995).
5.M. F. Koeing, S. J. Huang, Polymer, 36, 1877(1995).
6.H. Pranamuda, Y. Tokiwa, H. Tanaka, J. Environ. Polym. Degrad., 4, 1 (1996).
7.A. K. Schneider, U.S. Patent 2703316 (1955).
8.School of packaging, MSU; IT IS計畫 (2005/11).
9.L. V. Labrecque, R. A. Kumar,V. Dave´, R. A. Gross, S. P. Mccarthy, J. Appl. Polym. Sci., 66, 1507(1997).
10.N. Ljungberg, B. Wessle´n, J Appl Polym Sci., 86, 1227(2002).
11.Y. N. Joo, Masami Okamoto, Hirotaka Okamoto, Mitsuru Nakano, Arimitsu Usuki, Masatoshi Matsuda, Polymer, 47, 1340(2006).
12.H. Li, M. A. Huneault, Polymer, 10, 1016(2007).
13.P . J. Hocking, Rev. Macrohol. Chem. Phys., C32(1), 35(1992)
14.林錦義,“塑膠/木質纖維複合材料的研究〔二〕混練及加工性之探討”,塑膠資訊,1998,7
15.林錦義,“塑膠/木質纖維複合材料的研究〔三〕混練及加工性之探討〔續〕”,塑膠資訊,1998,8
16.林錦義,“塑膠/木質纖維複合材料的研究〔一〕仿木的迷思”,塑膠資訊,1998,5
17.劉士榮,“熱壓成型製成原理與最佳化”,塑膠資訊,1999,2
18.R. W. Lenz, Biodegradable polymers, 107, 1-40(1993).
19.G. J. L. Griffin, American Chemical Society, DC. 159(1974).
20.S. Bhatnagar, M. A. Hanna, Trans ASAE 38, 567(1995).
21.M. F. Koeing, S. Huang, J Polym, 36, 1877 (1995).
22.H. Pranamuda, Y. Tokiwa and H. Tanaka, J Environ Polym Degrad, 4, 1(1996).
23.R. Mani, J. Tang and M. Bhattacharya, Macromol Rapid Commun, 19, 283(1998).
24.Y. J. Wang, W. Liu, Z. Sun, J Appl Polym Sci., 92, 344-350(2004).
25.W. Liu, Y. J. Wang, Z. Sun, J Appl Polym Sci., 88, 2904-2911(2003).
26.S. Wang, Jiugao Yu, Jinglin Yu, J Appl Polym Sci., 93, 686-695 (2004).
27.S. O. Ryding, Environmental Management Handbook, Amsterdam, The Netherlands, 5, 55 (1994).
28.D. Brune, The Global Environment-science Technology and Management, 72, 3,1157(1997).
29.姜燮堂, 分解性塑膠, 交銀產業調查與技術季刊, 137, 4(2001).
30.P . J. Hocking, Rev. Macrohol. Chem. Phys., C32 (1), 35(1992).
31.G. Scott, D. Gilead, Degradable Polymers- Principles Applications, Chapman Hall, London, 217(1955).
32.J. Loucks, Polym Degrad and Stab, 59,245(1998).
33.A. Steinbuchel, FEMS Microbiol Rev., 217(1992).
34.K. G. Ho, A. L. Pometto, J Environ Polym Degrad, 76, 101(1999).
35.G. Felton, F. F. Farley, R. M. Hixon, Cereal Chen, 15 (1938).
36.M. W. Rutenberg, D. B. Solarek, Tapioca: Chemistry and Technology, Academic Press, New York, 349(1984).
37.D. B. Solarek, Modified Tapioca: Properties and Uses. Boca Raton, CKC Press, Florida, 97(1986).
38.J. A. Radley, Tapioca Production Technology, Applied Science Publishers, London, 22(1976).
39.D. Calson, L. Nie, R. Barayan, Dubois, J. Appl. Polym. Sci., 72, 477. (1999).
40.N. A. Higgins, U.S.Patent 2676945(1954).
41.J .W. Leenslag, University of Groningen, Amsterdam, The Netherlands (1982).
42.A. Gopferrich., Eur. J. Pham. Biopharm, 42, 1(1996).
43.E. Muller, M. Allgower, R. Schneider, H. Willlenegger, Manual of Internal Fixation, Verlag, Berlin (1979).
44.J. Schaztker, M. Tile, The Rationale of Operative Fracture Care, Verlag, Berlin (1987).
45.Y. L. Cao, C. A. Vacanti, J. Upton , Plast. Reconstr. Surg., 100,297(1997).
46.J. Mansbridge, K. Liu, R. Patch, Three-dimensional fibroblast culture implant for the treatment of diabetic foot ulcers: metabolic activity and therapeutic range. Tissue Eng., 4,403(1998).
47.D. K. Gilding, A. M. Reed, Polymer, 22, 494-498(1981).
48.J. G. Jeroen Van Soest, C. Remko Benzemer, Dick de Wit, F. G. Johannes Vliegenthart, Industrial Crops and Products, 1(1996).
49.W. Donovan, C. J. Mapes, Biometerials, 32,190 (1980).
50.J. W. Park,Seungsoon Im, Polym. Eng. Sci., 40, 12(2000).
51.J. G. Jeroen Van Soest, C. Remko Benzemer, Dick de Wit, F. G. Johannes Vliegenthart, Industrial Crops and Products, 1(1996).
52.G. J. L. Griffin., U. S. Patent, 4021388(1977).
53.J. L. Jane, W. A Schwabacher, S. N. Ramrattan, U.S.Patent, 5115000(1992).
54.D. Bikiaris, C. Panayiotou., J. Appl. Polym. Sci., 70, 1503(1998).
55.R. Chandra, R. Rustgi., Polym Degrad and Stab, 56, 185(1997).
56.J. Pallay, P. Kelemen, H. Berghmans, Macromol Mater. Eng., 275, 18(2000).
57.D. Bikiaris, J. Prinos, C. Panayiotou., Polym Degrad and Stab, 57, 313(1997).
58.C. Mercier, Physical and macromolecular modification, 61, 538(1984).
59.C. Bastioli, A. Rallis, F. Cangialosi, F. P. LaMantia, G. Titomanlio, S. Piccarolo, The Polymer Processing Society, European Regional Meeting Palermo ,Italy, 15(1991).
60.C. Bastioli, V. Bellotti, L. Del Giudice ,G. Gilli, J Environ Polym Degrad, 1, 3(1993) .
61.M. Otey, D. William, Symp. on Degradable Plastics, D.C., Washington, 10, 39(1987).
62.C. Bastioli, V. Bellotti, L. Del Guidice, R. Lombi, PCT Int. Pat,02025(1995).
63.S. Bloembergen, R. Narayan, A. Lathia, U.S. Patent, 5504378(1993).
64.R.P. Singh, J.K. Pandey,D. Rutot, Ph. Degee, Ph. Dubois, Carbohydrate Research, 338, 1759 (2003)
65.W. Xu, M. R. Amin, J. Appl. Polym. Sci., 71 , 1851(1999).
66.L. Averous, L. Moro, P. Dole, C. Fringant, Polymer, 41, 4157(2000).
67.D. Preechwong, M. Peesan, R. Rujiravanit, P. Supaphol, International Union of Pure and Applied Chemistry, 217(2004).
68.Bagley, E. B. Fanta, G. F. Doane, W. M., Gugliemelli, L. A., Russell, U.S. Patent, 4026849(1977).
69.Y. L. Bloembergen, Polym Degrad and Stab, 26, 1227(1994).
70.G. F. Fanta, C. L. Swanso, J. Appl. Polym. Sci., 44, 2037(1992).
71.C. Holten, Lactic acid Weinheim, Verlag Chemie, 221,31(1971).
72.M. Vert, F. Chabot, J. Leray, P. Christel, Macromol Chem. Phys.Suppl. , 5, 30(1981).
73.T. Nakamura, S. Hitomi, S. Watanabe, Y. Shimizu, K. Jameshidi, S. H. Hyon, Y. Ikada, J. Biomed Master, 23,1115 (1989).
74.G. Perego, G. Domenico Cella, C. Bastiol, J. Appl. Polym. Sci., 59, 37 (1996).
75.R. G. J.M.S.Sinclair, Pure Appl Chem, A33, 585(1996).
76.R. Auras, G. Kale, S. P. Singh, Global Plastics Environmental Conference (2006)
77.Y. Tabata, Y. Lkada, Biomed. Mater. Res., 22, 837 (1989).
78.M. Vert, Biomaterials, 15, 1209(1994).
79.T. G. Park, J. Controlled Release, 30,161(1994).
80.R. S. Raghuvanshi, International journal of pharmaceutics, 93, 1(1993).
81.D. Hutmacher, The international journal of oral&maxillofacial implants, 11, 667(1996).
82.S. Hyon, K. Jamshidi, Y. Lkada, Biometerials, 18, 1503(1997).
83.K. Hiltunen, J. V. Seppala, M. Harkonen, Marcromoleculars, 30,373(1997).
84.I. Rashkov, N. Manolova, S. M. Li, J. L. Espartero, M. Vert, Macromolecules, 29, 50(1996).
85.X. H. Chen, S. P. McCarthy, R. A. Gross, Macromolecules, 30, 4295(1997).
86.G. Maglio, A. Migliozzi, R. Palumbo, Polymer, 44, 369(2003).
87.D. Chon, A. Hotovely-Salomon, Polymer, 46, 2068(2005).
88.N. S. Choi, C. H. Kim, K. Y. Cho, J. K. Park, J Appl Polym Sci., 86, 1892(2002).
89.Y. H. Na, Y. He, X. Shuai, Y. Kikkawa, Y. Doi, Y. Inoue, Biomacro molecules, 3, 1179(2002).
90.E. Blűmm, A. Owen, J., Polymer, 36, 4077(1995).
91.L. L. Zhang, X. M. Deng, S. J. Zhao, Z. T. Huang, J Appl Polym Sci., 65, 1849(1997).
92.M. L. Focarete, M. Scandola, P. Dobrzynski, M. Kowalczuk, Macromolecules, 35, 8472(2002).
93.L. L. Zhang, C. D. Xiong, X. M. Deng, Polymer, 37, 235(1996).
94.A. J. Nijenhuis, E. Colstee, D. W. Grijpma, A. J. Pennings, Polymer, 37, 5849(1996).
95.L. Wang, W. Ma, R. A. Gross, S. P. McCarthy, Polym Degrad Stab, 59, 161(1998).
96.R. Dell’Erba, G. Groeninckx, G. Maglio, M., Malinconico, A., Migliozzi, Polymer, 42, 7831(2001).
97.C. C. Chen, J. Y. Chueh, H. Tseng, H. M. Huang, S. Y. Lee, Biomaterials, 24, 2297(2003).
98.A. M. Gajria, V. Davé, R. A. Gross, S. P. McCarthy, Polymer, 37, 437(1996).
99.N. Koyama, Y. Doi, Polymer, 38, 1589(1997).
100.I. Ohkoshi, H. Abe, Y. Doi, Polymer, 41, 5985(2000).
101.J. W. Park, S. S. Im, J Polym Sci Part B: Polym Phys, 40, 1931(2002).
102.J. W. Park, S. S. Im, J Appl Polym Sci., 86, 647(2002).
103.O. Martin, L. Avérous, Polymer, 42, 6209(2001).
104.M. Sheth, A. Kumar, V. Davé, R. A. Gross, S. P. McCarthy, J Appl Polym Sci., 66, 1495(1997).
105.Y. Hu, Y. S. Hu, V. Topolkaraev, A. Hiltner, E. Baer, Polymer, 44, 5681(2003).
106.Y. Hu, M. Rogunova, V. Topolkaraev, A. Hiltner, E. Baer, Polymer, 44, 5701(2003).
107.Y. Hu, Y. S. Hu, V. Topolkaraev, A. Hiltner, E. Baer, Polymer, 44, 5711(2003).
108.Z. Kulinski, E. Piorkowska, Polymer, 46, 10290(2005).
109.M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffieux, E. Wintermantel, J Appl Polym Sci., 2003, 90, 1731.
110.L. V. Labrecque, R. A. Kumar, V. Davé,R. A. Gross, S. P. McCarthy, J Appl Polym Sci., 66, 1507(1997).
111.N. Ljungberg, B.Wesslén, J Appl Polym Sci., 86, 1227(2002).
112.N. Ljungberg, B. Wesslén, Polymer, 44, 7679(2003).
113.N. Ljungberg, T. Andersson, B. Wesslén, J Appl Polym Sci,, 88, 3239(2003).
114.N. Ljungberg, B. Wesslén, J Appl Polym Sci., 94, 2140(2004).
115.N. Ljungberg, B. Wesslén, Biomacromolecules, 6, 1789(2005).
116.S. Jacobsen, H. G. Fritz, Polym Eng Sci., 39, 1303(1999).
117.J. F. Zhang, X. Sun, Polym Int, 53, 716(2004).
118.P. DeSantis,A. J. Kovacs, Biopolym, 6, 299(1968).
119.B. Eling, S. Gogolewski, A. J.Pennings, Polymer, 23, 1587(1982).
120.A. B. Morgan, J. W. Gilman, R. H. Harris, C. L. Jackson, C. H. Wilkie, J. Zhu, Polym. Mater. Sci. Eng., 83, 53 (2000).
121.Xanthos and S. S. Dagli, Polym. Eng. Sci., 31, 929(1991).
122.D. Heikens and W. Barentsen, Polymer, 18, 69(1977).
123.W. Barentsen and D. Heikens, Polymer, 14, 579(1973)
124.W. Barentsen, D. Heikens and P. Piet, Polymer, 15, 119(1974).
125.D. Heikens, N. Hoen, W. Barentsen, P. Piet and H. Ladan, J. Polym. Sci., 62, 309(1978).
126.F. Ide, A. Hasegawa, J. Appl. Polym. Sci., 18, 963(1974).
127.S. Endo, K. Min, J. L. White and T. Kyu, Polym. Eng. Sci., 26, 45(1986).
128.M. Yoshida, J. J. Ma, K. Min, J. L. White and R. P. Quirk, Polym. Eng. Sci., 30, 30(1990).
129.R. Jiang, R. P. Quirk, J. L. White and K. Min, Polym. Eng. Sci., 31, 1545 (1991).
130.D. K. Setua and J. L. White, Polym. Eng. Sci., 31, 1742(1991).
131.劉士榮,“熱壓成型製成原理與最佳化”,塑膠資訊,1999,2
132.Otey, W. M. Doane, Symp. on Degradable Plastics, June 10, Washington, D.C. 39-40(1987).
133.A. Marcilla, F. J. Sempere, J. A. Reyes-Labarta, Polymer, 45, 4977-4985(2004).
134.M. Zanetti, L. Costa, Polymer, 45, 4367-4375(2004).
135.M. Zanetti, P. Bracco, L. Costa, Polym Degrad and Stab, 85, 657-665(2004).
136.A. Guiu, M. E. R, Shanahan Intal J Adhesion & Adhesives 22, 415-420 (2002).
137.A. Guiu, M. E. R., Shanahan Intal., J Adhesion & Adhesives, 24, 523-531 (2004).
138.G. Hu, B. Wang, X. Zhou, Materials Letter, 58, 3457-3460(2004).
139.R. Chandra, R. Rustgi, Polym Degrad and Stab, 56, 185-202(1997).
140.U. Hippi, J. Mattila, M. Korhonen, and J. Seppala, Polymer, 44, 1193-1201(2003)
141.L. V. Labrecque, R. A. Kumar, V. Dave´, R. A. Gross, S. P. Mccarthy, J. Appl. Polym. Sci., 66, 1507(1997).
142.S. Jacobsen, H. G. Frit, Polym. Eng. Sci., 39, 7(1999).
143.O. Martin, L. Averous, Polymer, 42, 6209(2001).
144.M. Baiardo, G. Frisoni, J. Appl. Polym. Sci., 90, 1731(2003).
145.C. Holten, Lactic acid Weinheim, Verlag Chemie, 221,31(1971).
146.M. Vert, F. Chabot, J. Leray, P. Christel, Macromol Chem. Phys.Suppl., 5, 30 (1981).
147.D. Hutmacher, The international journal of oral&maxillofacial implants, 11, 667(1996).
148.C.H. Lin, C.S. Wang, Polymer, 42, 1869-1878(2001).
149.S.S. Hou, Y.P. Chung, C.K. Chan, P.L. Kuo, Polymer, 41, 3263-3272(2000).
150.G.H. Shiue, W.J. Wang, F.C. Chang, J. Appl. Polym. Sci., 73, 1231-1238 (1999).
151.W.J. Wang, L. H. Perng, G. H. Hsiue, F. C. Chang, Polymer, 41, 6113-6122(2000).
152.G. H. Shiur, Y. L. Liu, H. H. Liao, J. Polym. Sci.: Part A: Polymer Chemistry, 39, 986-996 (2001).
153.L. Matejka, K. Dusek, J. Plestil, J. Kriz, F. Lednicky, Polymer, 40, 171-181(1998).
154.L. Matejka, J. Plestil, K. Dusek, J. Non-Crystalline Solids, 226, 114-121(1998).
155.L. Matejka, O. Dukh, J. Kolarik, Polymer, 41, 1449-1459(2001).
156.S. Kang, S.Il Hong, C. R. Choe, M. Park, S. Rim, J. Kim, Polymer, 42, 879-887(2001).
157.L. Levene, and I. M. Thomas, U.S. Patent 3, 640, 093(1972).
158.H. Dislich, C. Angewandt, 10, 363(1971).
159.G. S. Sur, and J. E. Mark, Eur Polym J., 21, 1051 (1985).
160.J. E. Mark, and G. S. Sur, Polym. Bull., 14, 325 (1985).
161.S. J. Clarson, and J. E. Mark, Polym. Commun, 28, 249 (1987).
162.Y. Imai, Advances in Polym. Sci., 140, 1(1999).
163.J. A. He, L. L. K.Samuelson, J. Kumar, S. K. Tripathy, Advanced Materials, 11, 435(1999).
164.M. Guglielmi, G. Brusatin, G. Facchin, M. Gleria, Applied organometallic chemistry, 13, 339(1999).
165.Takahashi, Yoshihiro; Maeda, Akinori; Kojima, Kenzo; Uchida, Kenji, J. Luminescence, 87, 767(2000).
166.Opallo, Marcin, Kukulka, J. Electrochemistry Communications, 2, 394(2000).
167.Mimura, Shinya, Naito, Hiroyoshi, Kanemitsu, Yoshihiko, Matsukawa, Kimihiro, Inoue, Hiroshi, J. Organometallic Chemistry, 611, 40(2000).
168.S. H. Jang, M. G. Han, S. S. Im, Synthetic Metals., 110, 17(2000).
169.T. C. Chang, Y. T. Wang, Y. S. Hong, H. B. Chen,J. C. Yang, Polym Degrad and Stab, 69, 3(2000).
170.K. Wang, M. Choi, C. Koo, Y. Choi, Y. and I. Chung., Polymer, 42, 9818(2001).
171.J. Heinemann, P. Reichert, R. Thomann, and R. Mulhaupt, Macromol. Rapid Commun, 20, 423-430(1999).
172.M. Alexandre, and P. Dubois, Materials Science and Engineering, 28, 1-63(2000).
173.J. M. Jethmalani, H. B. Sunkars and W. T. Ford, Langmuir, 13, 2633(1997).
174.C. S. Wu, and H. T. Liao, J. Appl Polym Sci., 88, 966-972(2003).
175.D. L. Wood and E. M. Rabinorich, Heat evolution, light scattering and infrared spectroscopy in the formation of silica gels from alkoxides, J. Non-cryst. Solid, 107, 199(1989).
176.ASTM D5210-92 (2000); D5271-93; D5511-94; D5522-94a; D5526-94; D5951-96; D5998-96; D6002-96; D6003-96; D5338-98e1; D6340-98; D6691-01; D6692-01
177.ISODIS14851 (1999); ISODIS14852 (1999); ISODIS14855 (1999).
178.N. G. Gayload, R. Mehta, V. Kumar, M. Tazi, J. Appl Polym Sci., 38, 359(1989).
179.Y. Abe, and T. Misono, J. Polym. Sci.: Polym. Chem. Ed., 21, 41(1983).
180.P. L. Shao, K. A. Mauritz and R. B. Moore, J. Polym. Sci.: Part B: Polymer Physical, 34, 873(1996).
181.C. S. Wu, Polym Degrad and Stab, 80, 127(2003).
182.E. Pretsch, T. Clere, J. Seibl, and W. Simon, Table of Spectral Data for Structure Determination of Organic Compound, 2nd Edition, Springer-Verlag, New York, 15(1989).
183.Bikiaris, D. Panayistu, J Appl Polym Sci., 70, 1503(1998).
184.S. K. Saha, H. Tsuji, Polym Degrad and Stab, 91, 1665(2006).
185.D. W. Grijpma, G. J. Zondervan, A. Pennings, J. Polym Bulletin, 25, 327(1991).
186.W. Zhong, J. Ge, Z. Gu, W. Li, X. Chen, Y. Zang, Y. Yang, J Appl Polym Sci., 74, 2546(1999).
187.S. Solarski, M. Ferreira, E. Devaux, Polymer, 46, 11187(2005).
188.Y. Munehisa, T. Shinsuke, I. Koji, O. Yoshinori, D. Yusuke, T. Kazuhisa, Polymer, 47, 7554(2006).
189.Hoogsten, W., Postema, A. R., Pennings, A. J., Brinke, G., Zugenmaier, P., Macromolecules, 23, 634(1990).
190.B. Kalb, A. J. Pennings, Polymer, 21, 607(1980).
191.T. Miyata, T. Masuko, Polymer, 38, 4003(1997).
192.J. Puiggali, Y. Ikada, H. Tsuji, L. Cartier, T. Okihare, B. Lotz, Polymer, 41, 8921(2000).
193.T. Okihara, K. Okumura, A. Kawaguchi, J Marcomol Sci Phys, B42, 875(2003).
194.C. Migliaresi, D. Cohn, A. D. Lollis, L. Fambri, L., J Appl Polym Sci., 43, 83(1991).
195.C. S. Wu, H. T. Liao, Polymer, 46, 10017(2005).
196.C. S. Wu, J. Appl. Polym. Sci., 92, 1749(2004).
197.C. S. Wu, Macromolecular Bioscience, 5, 352(2005).
198.D. A. Siudak, P. R. Start, and K. A. Mauritz, J Appl. Polym Sci., 77, 2832(2000).
199.F. Suzuki, K. Nakane and J. S. Piao, J. Mater. Sci., 31, 1335(1996).
200.Y. Wei, D. Yang and R. Bakthvatchalam, Matter. Lett, 13, 261(1992).
201.Y. G. Hsu, I. J. Chiang, C. Perrier and J. F. Lo, J. Appl. Polym. Sci., 78, 1179(2000).
202.K. H. Wu, T. C. Chang, J. C. Yang and H. B. Chen, J. Appl. Polym. Sci., 79, 965-973(2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top