跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛有強
研究生(外文):Kevin Octavius Sentosa
論文名稱:多生物特徵驗證系統於評分階段融合的效能評估
論文名稱(外文):Performance Evaluation of Score Level Fusion in Multimodal Biometric Systems
指導教授:洪西進洪西進引用關係
指導教授(外文):Shi-Jinn Horng
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:43
中文關鍵詞:多生物特徵評分階段融合正規化sum rule支援向量機
外文關鍵詞:normalizationsum ruleverificationMultimodal biometricsscore level fusionSupport Vector Machines
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在一個多生物特徵的驗證系統中,需要一個有效地融合方法來整合從多個單一生物特徵系統中所得到的資訊。本論文觀察了sum rule-based 融合方法和支援向量機(Support Vector Machines, SVM)-based融合方法在評分階段的效能。在這邊使用了三種生物特徵:指紋、人臉以及指靜脈。並且提出一個由min-max正規化所推導出之較健全的正規化方法。在四個不同的多生物特徵資料庫中實驗後,顯示出我們提出的方法結合sum rule-based融合方法和SVM-based融合方法可獲得相當高的正確性。在經由本論文提出的正規化方法再進行簡單的sum rule後的效能可以和其他基於比對分數密度之估測的方法來比較。比較sum rule-based融合方法和SVM-based融合方法的實驗結果發現,當核心以及參數被仔細地選取時,SVM-based融合方法較sum rule-based融合方法可以獲得更好的效果。
In a multimodal biometric system, the effective fusion method is necessary for combining information from various single modality systems. In this paper we examined the performance of sum rule-based score level fusion and Support Vector Machines (SVM)-based score level fusion. Three biometric characteristics were considered in this study: fingerprint, face, and finger vein. We also proposed a new robust normalization scheme which is derived from min-max normalization scheme. Experiments on four different multimodal databases suggest that integrating the proposed scheme in sum rule-based fusion and SVM-based fusion leads to consistently high accuracy. The performance of simple sum rule preceded by our normalization scheme is comparable to another approach which is based on the estimation of matching scores densities. Comparison between experimental results on sum rule-based fusion and SVM-based fusion reveals that SVM-based fusion could attain better performance compared to sum rule-based fusion, provided that the kernel and its parameters have been carefully selected.
Abstract i
摘要 ii
Acknowledgements iii
Table of Contents v
List of Equations vii
List of Figures viii
List of Tables ix
I Introduction 1
I.1 Multimodal Biometric System 2
I.2 Objectives 5
I.3 Thesis Organization 7
II Score Level Fusion 8
II.1 Various Normalization Schemes 9
II.1.1 Min-Max Normalization 10
II.1.2 Z-Score Normalization 11
II.1.3 Tanh-Estimators Normalization 12
II.1.4 Reduction of High-scores Effect Normalization 13
II.2 Sum Rule-based Fusion 15
II.3 Support Vector Machines (SVM)-based Fusion 16

III Databases and Experimental Design 18
III.1 Databases 18
III.2 Experimental Design 22
IV Experimental Results 25
IV.1 Performance of Sum Rule-based Fusion 25
IV.2 Performance of SVM-based Fusion 31
V Conclusions 35
References 37
Appendix: Tanh Normalization Example 41
[1]S. Prabhakar, S. Pankanti, and A. K. Jain, Biometric Recognition: Security and Privacy Concerns, IEEE Security & Privacy, March/April 2003, pp. 33-42
[2]J. Ortega-Garcia, J. Bigun, D. Reynolds, and J. Gonzalez-Rodriguez, Authentication Gets Personal with Biometrics, IEEE Signal Processing Magazine, March 2004
[3]S. Prabhakar, A. Ross, and A. K. Jain, An Introduction to Biometric Recognition, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 14, No. 1, January 2004
[4]A. Ross, K. Nandakumar, and A. Jain, Score Normalization in Multimodal Biometric Systems, Pattern Recognition 38 (2005), pp. 2270-2285
[5]B. Ulery, A. Hicklin, C. Watson, W. Fellner, and P. Hallinan, Studies of Biometric Fusion – Executive Summary, NISTIR 7346, National Institute of Standards and Technology, September 2006
[6]A. Kumar and D. Zhang, Personal Recognition Using Hand Shape and Texture, IEEE Transactions on Image Processing, Vol. 15, No. 8, August 2006
[7]Md. M. Monwar and M. Gavrilova, FES: A System for Combining Face, Ear, and Signature Biometrics Using Rank Level Fusion, Fifth International Conferences on Information Technology: New Generations (ITNG 2008), April 2008, pp. 922-927
[8]K. Nandakumar, Y. Chen, S. C. Dass, and A. K. Jain, Likelihood Ratio-Based Biometric Score Fusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, No. 2, February 2008, pp. 342-347
[9]F. Yang and B. Ma, A New Mixed-Mode Biometrics Information Fusion Based-on Fingerprint, Hand-geometry, and Palm-print, Fourth International Conference on Image and Graphics 2007, August 2007, pp. 689-693
[10]A. Ross and A. Jain, Information Fusion in Biometrics, Pattern Recognition Letters 24 (2003), pp. 2115-2125
[11]S. S. Iyengar, L. Prasad, and H. Min, Advances in Distributed Sensor Technology, Prentice Hall, 1995
[12]L. Lam and C. Y. Suen, Application of Majority Voting to Pattern Recognition: An Analysis of Its Behavior and Performance, IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 27 (5) (1997), pp. 553-568
[13]L. Lam and C. Y. Suen, Optimal Combination of Pattern Classifiers, Pattern Recognition Letters 16 (1995), pp. 945-954
[14]S. Ribaric and I. Fratric, Experimental Evaluation of Matching-Score Normalization Techniques on Different Multimodal Biometric Systems, IEEE Mediterranean Electrotechnical Conference 2006, May 2006, pp. 498-501
[15]A. B. A. Graf and S. Borer, Normalization in Support Vector Machines, 23rd DAGM-Symposium on Pattern Recognition (2001), pp. 277-282
[16]C. W. Hsu, C. C. Chang, and C. J. Lin, A Practical Guide to Support Vector Classification, March 2008
[17]J. Hashimoto, Finger Vein Authentication Technology and Its Future, Symposium on VLSI Circuits (2006), pp. 25-28
[18]http://www.freedownloadscenter.com/Programming/ActiveX/Face_Recognition_ActiveX_DLL_Download.html
[19]S. C. Dass, K. Nandakumar, and A. K. Jain, A Principled Approach to Score Level Fusion in Multimodal Biometric Systems, Proceedings of AVBPA, 2005
[20]G. L. Marcialis and F. Roli, Score-level Fusion of Fingerprint and Face Matchers for Personal Verification Under “Stress” Conditions, 14th International Conference on Image Analysis and Processing, 2007
[21]F. R. Hampel, P. J. Rousseeuw, E. M. Ronchetti, and W. A. Stahel, Robust Statistics: The Approach Based on Influence Functions, John Wiley & Sons, 1986
[22]J. H. Hu and X. M. He, Enhanced Quantile Normalization of Microarray Data to Reduce Loss of Information in the Gene Expression Profile, Biometrics 2007; 63(1):50-9
[23]F. Wolf, T. Scheidat, and C. Vielhauer, Study of Applicability of Virtual Users in Evaluating Multimodal Biometrics, Lecture Notes in Computer Science, Volume 4105/2006, Springer Berlin/Heidelberg, pp. 554-561, 2006
[24]R. Snelick, U. Uludag, A. Mink, M. Indovina, and A. Jain, Large-Scale Evaluation of Multimodal Biometric Authentication Using State-of-the-Art Systems, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 3, March 2005, pp. 450-455
[25]X. Y. Wang and Y. X. Zhong, Statistical Learning Theory and State of the Art in SVM, Proceedings of the Second IEEE International Conference on Cognitive Informatics, 2003
[26]V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995
[27]J. Fierrez-Aguilar, J. Ortega-Garcia, D. Garcia-Romero, and J. Gonzalez-Rodriguez, A Comparative Evaluation of Fusion Strategies for Multimodal Biometric Verification, Proceeding of IAPR International Conference on Audio and Video-based Person Authentication (AVBPA), 2003
[28]C. C. Chang and C. J. Lin, LIBSVM: a Library for Support Vector Machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[29]C. Cortes and V. Vapnik. Support-vector Network. Machine Learning, 20: 273-297, 1995
[30]National Institute of Standards and Technology, NIST Biometric Scores Set, 2004. Available at http://www.itl.nist.gov/iad/894.03/biometricscores/
[31]H. Korves, L. Nadel, B. Ulery, and D. Masi, Multi-biometric Fusion: From Research to Operations, Sigma, Mitretek Systems, Summer 2005, pp. 39-48
[32]D. Mulyono and S. J. Horng, A Study of Finger Vein Biometric for Personal Identification, Proceeding of IEEE International Symposium on Biometrics and Security Technologies 2008, pp. 1-8
[33]B. Dorizzi, S. Garcia-Salicetti, and L. Allano, Multimodality in Biosecure: Evaluation on Real vs. Virtual Subjects, IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 5, May 2006, pp. V-1089 – V-1092
[34]K. Nandakumar, Yi Chen, A.K. Jain, and S. C. Dass, Quality-based Score Level Fusion in Multibiometric Systems, 18th International Conference on Pattern Recognition, Vol. 4, 2006, pp. 473-476
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top