跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 15:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:康哲誌
研究生(外文):CHE-CHIH KAN
論文名稱:植基於對比型態分類的快速碎形影像壓縮法
論文名稱(外文):Fast fractal image encoding based on contrast pattern classification
指導教授:鍾國亮鍾國亮引用關係
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:資訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:28
中文關鍵詞:碎形影像壓縮對比分類法SCHVD紋理分析空間關聯性
外文關鍵詞:Fractal image encodingContrast-pattern classificationSCHVDTexture analysisSpatial-correlation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:286
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在碎形影像壓縮研究領域中,縮短壓縮時間長久以來一直是個重要的議題。本篇論文提出一種植基於區塊對比型態的分類方法。依照區塊的對比型態,將區塊分為平滑、棋盤狀、水平、垂直、對角、反對角,共六類。讓range block只搜尋相關的domain block,因此得以利用紋理資訊來達到縮短壓縮時間的目的。
此外結合空間關聯性的作法,讓大部分range block在周邊搜尋時便能找到合適的domain block。針對少部份無法在周邊搜尋找到合適對象的range block,再作全域紋理搜尋。實驗數據顯示,利用對比型態分類法可以有效縮短壓縮時間,並讓影像品質維持在一定的水準之上。
Speeding up fractal image encoding is an important issue. In this thesis, we propose a fractal encoding method based on contrast-pattern classification. According to contrast-pattern of each block, range and domain blocks are divided into 6 classes – Smooth, Chessboard, Horizontal, Vertical, Diagonal and Anti-diagonal (SCHVD). Then, for each range block, we only search domain blocks in the corresponding domain pool to speed up fractal encoding. By limiting the domain pool for each range block, the encoding time can be shortened.
Moreover, the proposed method can be combined with the spatial-correlation method. In this hybrid approach, most range blocks could get qualified domain blocks from neighbor’s fractal code. For others, which can’t get domain blocks from neighbor search, the SCHVD classification is served to limit the size of domain pool to speed up encoding. Experiment results show that the proposed algorithm can shorten encoding time and also keep the quality of the reconstructed image.
摘要 I
Abstract II
目錄 III
圖表目錄 IV
1. 緒論 1
2. 碎形影像壓縮 2
2.1. Partition Iterated Function System (PIFS) 2
2.2. Baseline碎形影像壓縮 3
3. 對比型態分類法 5
3.1. “負片” 特性 5
3.2. 紋理分類(SCHVD) 6
3.3. Cross-class reference 10
3.4. 高變異的Range Block 12
4. 結合空間關聯性 14
4.1. 先前研究:利用空間關聯性 14
4.2. SCHVD與空間關聯性結合 15
5. 實驗結果 17
5.1. 與Baseline方法比較 17
5.2. 與DCT分類法比較(Exhaustive) 19
5.3. 與DCT分類法比較(Fixed Domain Number) 22
5.4. 針對高變異range block的改善 24
5.5. 與空間關聯性結合 25
6. 結論 26
參考文獻 27
[1]Barnsley MF, Fractal everywhere. New York: Academic; 1988.
[2]Jacquin AE, Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans Image Process 1992, 1, 18–30.
[3]Wohlberg B, De Jager G, A review of the fractal image coding literature. IEEE Trans Image Process 1999, 12, 1716–29.
[4]Fisher Y, editor. Fractal image compression: theory and application. New York: Springer-Verlag; 1994.
[5]Truong T.K., Jeng J.H., Reed I.S., Lee P.C., Li A.Q., A fast encoding algorithm for fractal image compression using the DCT inner product. IEEE Trans Image Process 2000, 4, 529–35.
[6]Lai CM, Lam KM, Siu WC., A fast fractal image coding based on kick-out and zero contrast conditions. IEEE Trans Image Process 2003, 11, 1398–403.
[7]He C., Xu X., Yang J., Fast fractal image encoding using one-norm of normalised block (2006) Chaos, Solitons and Fractals, 27 (5), 1178–1186.
[8]Lee C.K., and Lee W.K., Fast fractal image block coding based on local variances, IEEE Trans. Image Process., 1998, 7, (6), 888–891.
[9]He C., Yang S.X., Huang X., Variance-based accelerating scheme for fractal image encoding. Electron Lett, 2004, 2, 115–6.
[10]Ghosh SK, Mukherjee J, Das PP., Fractal image compression: a randomized approach. Pattern Recognition Lett, 2004, 25, 1013–24.
[11]Truong T.K., Kung C.M., Jeng J.H., Hsieh M.L., Fast fractal image compression using spatial correlation. Chaos, Solitons & Fractals 2004, 22, 1071–6.
[12]Furao S., Hasegawa O., A fast no search fractal image coding method, Signal Processing: Image Communication, 2004, 19 (5), 393-404.
[13]Duh D.J., Jeng J.H., Chen S.Y., DCT based simple classification scheme for fractal image compression, Image and Vision Computing, 2005, 23, 1115-21.
[14]Chung K.L., Hsu C.H., Novel prediction- and subblock-based algorithm for fractal image compression, Chaos, Solitons and Fractals, 2006, 29 (1), 215-222.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top