跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 16:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃彥能
研究生(外文):Yen-Neng Huang
論文名稱:銻砷化鎵之光學特性研究
論文名稱(外文):The optical characterization of GaAs1-xSbx films
指導教授:黃鶯聲
指導教授(外文):Ying-Sheng Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:63
中文關鍵詞:銻砷化鎵分子束磊晶法光子調制反射技術壓電調制反射技術光激發螢光光譜應力
外文關鍵詞:GaAsSbmolecular beam epitaxyphotoreflectancepiezoreflectancephotoluminescencestrain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用光子調制反射光譜(PR)、壓電調制反射光譜(PzR)和光激螢光光譜(PL)來研究以氣態分子束磊晶法成長在GaAs基板上不同Sb成份之GaAs1-xSbx薄膜及其退火光學特性。由PzR、PR及PL光譜,可觀察GaAs1-xSbx訊號隨著Sb含量增加而產生紅移,從入射光沿著E‖[ ]及E‖[ ]兩極化方向之PR光譜,得知GaAs1-xSbx薄膜之非對稱性質隨Sb成份增加而更趨於明顯。藉由比較PR及PzR實驗可分辨出重電洞(heavy hole)與輕電洞(light hole)躍遷信號。並得到因應力所造成價帶分裂量隨著Sb的成份越高而增加。最後,藉由溫度變化的PR量測得到重電洞及輕電洞兩躍遷訊號隨溫度變化(15K-300K)的情形,利用Varshni及Bose-Einstein兩方程式來得到其相關的溫度參數並加以討論。
The optical properties of GaAs1-xSbx layers grown on GaAs substrates via gas-source molecular beam epitaxy have been characterized by polarized photoreflectance (PR), piezoreflectance (PzR), and photoluminescence (PL). The PR, PzR, and PL spectra exhibited red shift of the band edge transition features with increasing Sb content. A more pronounced anisotropic character along [ ] and [ ] polarizations, with respect to the increase of Sb content, has also been observed by the polarized PR spectra. By comparison of the relative intensity of PzR and PR spectra, the identification of conduction to heavy-hole (HH) band and conduction to light-hole (LH) band transitions originated from the strained induced valence band splitting has been accomplished. The results indicate increases of the valence band splitting with increasing of Sb contents.
The temperature dependence of near band edge transition energies as a function of temperature from 15–300 K are analyzed using the Varshni expression and an expression containing the Bose–Einstein occupation factor for phonons. The parameters that describe the temperature variations of the near band edge transition energies are evaluated and discussed.
中文摘要...………………………………………………………………..I
英文摘要………………………………………………………………...II
目錄……………………………………………………………………..III
圖索引…………………………………………………………………...V
表索引………………………………………………………………….VII
第一章 序論 1
1.1 研究背景 1
1.2 研究主題與方法 2
第二章 銻砷化鎵材料基本物性與成長簡介 5
2.1 銻砷化鎵簡介 5
2.2 銻砷化鎵薄膜成長 7
2.3 快速熱退火 7
第三章、調制光譜理論及量測技術 10
3.1調制光譜相關理論 10
3.1.1 前言 10
3.1.2 反射率與介電函數之關係 11
3.1.3 壓電調制理論 13
3.2調制光譜及極化量測技巧 17
3.2.1調制光譜量測 17
3.2.2極化量測技巧 18
3.3調制光譜系統概述 19
3.4 光激發螢光光譜量測(PL) 22
3.4.1 光激發螢光(PL)原理 22
3.4.2 PL 實驗方法與實驗系統 23
第四章 結果與討論 27
4.1 銻砷化鎵之光學特性 28
4.1.1 銻砷化鎵之非對稱性質 28
4.1.2 銻砷化鎵之光學性質比較 32
4.1.3 銻砷化鎵的溫度特性 40
4.2 銻砷化鎵之退火特性 51
4.2.1 銻砷化鎵退火之光學性質比較 51
4.2.2 銻砷化鎵退火樣品的溫度特性 56
第五章 結論 62
參考文獻 63
.Kondow, M., T. Kitatani, and K. Uomi, “GaInNAs: A Novel Material for Long-Wavelength Semiconductor Lasers”, IEEE J. Sel. Topics. Quantum Electron., Vol. 3, No. 3, pp. 719-730 (1997).

.Li, N. Y., C. P. Hains, K. Yang, J. Lu, J. Cheng, and P. W. Lee, “Organometallic Vapor Phase Epitaxy Growth and Optical Characteristics of Almost 1.2 μm GaInNAs Three Quantum Well Laser Diodes”, Appl. Phys. Lett., Vol. 75, No. 8, pp. 1051-1053 (1999).

.Ungaro, G., G. L. Roux, R. Teissier, and J. C. Harmand, “GaAsSbN: A New Low-Bandgap Material for GaAs Substrates”, Electronics Lett., Vol. 35, No. 15, pp. 1246-1248 (1999).

.Anan, T., K. Nishi, S. Sugou, M. Yamada, K. Tokutome, and A. Gomyo, “Low-Threshold Lasing at 1.3μm from GaAsSb Quantum Wells Directly Grown on GaAs Substrates”, LEOS’98 Conf. Proc., Orlando, Vol. 1, Paper WA3, pp. 149-150 (1998).

. Anan, T., K. Nishi, S. Sugou, M. Yamada, K. Tokutome, and A.Gomyo, “GaAsSb: A Novel Material for 1.3μm VCSELs”, Electronics Lett., Vol. 34, No. 22, pp. 2127-2129 (1998).

.Blum, O., J. F. Klem, “Characteristics of GaAsSb Single Quantum Well Lasers Emitting Near 1.3μm”, IEEE PhotonicsTechnol. Lett.,Vol. 12, No. 7, pp. 771-773 (2000).

.Ryu, S. W., and P. D. Dapkus, “Low Threshold Current Density GaAsSb Quantum Well Lasers Grown by Metal Organic Chemical Vapor Deposition on GaAs Substrates”, Electronics Lett., Vol. 36, No. 16, pp. 1387-1388 (2000).

.Anan, T., M. Yamada, K. Tokutome, S. Sugou, K. Nishi, and A. Kamei, “Room Temperature Pulsed Operation of GaAsSb/GaAs Vertical Cavity Surface Emitting Lasers”, Electronics Lett., Vol. 35, No. 11, pp. 903-904 (1999).

9.Yamada, M., T. Anan, K. Tokutome, K. Nishi, and S. Sugou, “Low-Threshold Operation of 1.3μm GaAsSb Quantum Well Lasers Directly Grown on GaAs Substrates”, IEEE Photonics Technol. Lett., Vol. 12, No. 7, pp. 774-776 (2000).

.Sun, X., S. Wang, J. S. Hsu, R. Sidhu, X. G. Zheng, X. Li, and J. C. Campbell, “GaAsSb: A Novel Material for Near Infrared Photodetectors on GaAs Substrates”, IEEE J. Quantum Electron., Vol. 8, No. 4 , pp. 817-822 (2002).

.Silberstein, R. P., and F. H. Pollak, “Observation of Exciton Quenching in GaAs at Room Temperature Using Electrolyte Electroreflectance”, Solid State Commu., Vol. 33, No. 11, pp. 1131-1133 (1980).

.Berry, A. K., D. K. Gaskill, and G. T. Stauf, “Photoreflectance of Semi-Insulating InP: Resisitivity Effects on the Exciton Phase”, Appl. Phys. Lett., Vol. 58, No. 24, pp. 2824-2826 (1991).

13.Acosta-Ortiz, S. E., and Lastras-Martinez, “Measurement of Above-Bandgap Optical Anisotropies in the (001) Surface of GaAs”, Solid State Commu., Vol. 64, No. 5, pp. 809-811 (1987).

.Acosta-Ortiz, S. E., and Lastras-Martinez, “Electro-optic Effects in the Optical Anisotropies of (001) GaAs”, Phys. Rev. B, Vol. 40, No. 2, pp. 1426-1429 (1989).

.Glembocki, O. J., N. Bottka, and J. E. Fuxrneaux, “Effects If Impurity Transition on Electroreflectance in Thin Epitaxial GaAs and Ga1-xAlxAs/GaAs Layers”, J. Appl. Phys., Vol. 57, No. 2, pp. 432-437 (1985).

.Tober, R. L. and J. D. Bruno, “Modulation Effects Near the GaAs Absorption Edge”, J. Appl. Phys., Vol. 68, No. 12, pp. 6388-6392 (1990).

.Qiang, H., F. H. Pollak, and G. Hickman, “Piezo-Photoreflectance of Direct Gap of GaAs and Ga0.78Al0.22As”, Solid State Commu., Vol. 76, No. 9, pp. 1087-1091 (1990).

.Bicelli, L. P., “Excitonic Interference Phenomena in Electrolyte Electroreflectance : Application to n-CuInSe2”, J. Appl. Phys., Vol. 62, No. 11, pp. 4523-4527 (1987).

.Yin, X., X. Guo, F. H. Pollak, G. D. Petitt, J. M. Woodall, T. P. Chen, and C. W. Tu, “Nature of Band Bending at Semiconductor Surfaces by Contactless Electroreflectance”, Appl. Phys. Lett., Vol. 60, No. 11, pp. 1336-1338 (1992).

.Wang, D. P., K. M. Huang, T. L. Shen, K. F. Huang, and T. C. Huang, “The Effects of the Magnitude of the Modulation Field on Electroreflectance Spectroscopy of Undoped-n+ type Doped GaAs”, J. Appl. Phys., Vol. 83, No. 1, pp. 476-479 (1993).

21.Hughes, P. J., B. L. Weiss, and T. J. C. Hosea, “Analysis of Franz-Kyldysh Oscillations in Photoreflectance Spectra of a AlGaAs/GaAs Single Quantum Well Structure”, J. Appl. Phys., Vol. 77, No. 12, pp. 6472-6480 (1995).

.Shen, H., M. Dutta, L. Fotiadis, P. G. Newman, R. P. Moerkirk, W. H. Chang, and R. N. Sacks, “Photoreflectance Study of Surface Fermi Level in GaAs and GaAlAs”, Appl. Phys. Lett., Vol. 57, No. 20, pp. 2118-2120 (1990).

.Kanata, T., M. Matsunaga, H. Takakawa, Y. Hamakawa, and T. Nishino, “Deep-Level Characterization of n-type GaAs by Photoreflectance Spectroscopy”, J. Appl. Phys., Vol. 69, No. 6, pp. 3691-3695 (1991).

24.Pollak, F. H., “Modulation Spectroscopy as a Technique for Semiconductor Characterization”, Proc. SPIE, Vol. 276, pp. 142-156 (1981).

.Huang, D., G. Ji, U. K. Reddy, H. Morkoc, F. Xiong, and T. A. Tombrello, “Photoreflectance, Absorption, and Nuclear Resonance Reaction Studies of AlxGa1-xAs Grown by Molecular-Beam Epitaxy”, J. Appl. Phys., Vol. 63, No. 11, pp. 5447-5453 (1988).

.Huang, D., J. Chyi, J. Klem, and Hadis Morkoc, “Optical Properties of Molecular Beam Epitaxially Grown GaAs1-xSbx (0
.Johnson, S. R., C. Z. Guo, S. Chaparro, Y. G. Sadofyev, J. Wang, Y. Cao, N. Samal, J. Xu, S. Q. Yu, D. Ding, and Y. H. Zhang, “GaAsSb/GaAs Band Alignment Evaluation for Long Wave Photonic Applications”, J. Cryst. Growth, Vol. 251, pp. 521-525 (2003).

.Cunningham, J. E., M. Dinu, J. Shah, F. Quochi, D. kilper, W. Y. Jan, M. D. Williams, A. Mills, and W. E. Henderson, ”Growth and Optical Properties of GaAsSb Quantum Wells for 1.3μm VCSELs”, J. vac. Sci. Technol. B, Vol. 19, No. 5, pp. 1948-1952 (2001).

.Seraphin, B. O., “The Effect of an Electric Field on Reflectivity of Germanium”, Proc. 7th Int. Conf. Phys. Semicond., ed. By M. Hulin, Academic, Dunod, Paris (1964).

30.Pollak, F. H., and H. Shen, “Modulation Spectroscopy of Semiconductor : Bulk/Thin Film, Microstructures, Surface/Interface and Devices”, Mater. Sci. and Eng. R, Vol. 10, No. 7-8, pp. 275-374 (1993).

31.Mathieu, H., J. Allegre, and B. Gil, “Piezomodulation Spectroscopy : A Powerful Investigation Tool of Heterostructures”, Phys. Rev. B, Vol. 43, No. 3, pp. 2218-2227 (1991).

.Tober, R. L., A. L. Smirl, and T. F. Boggess, “Piezo-reflectance as a Supplement to Photoreflectance for Nondestructive Characterization of GaAs/AlxGa1-xAs Multiple Quantum Wells”, J. Appl. Phys., Vol. 64, No. 9, pp. 4678-4682 (1988).

.Shen, H, M. Dutta, and R. Lux, “Dynamics of Photoreflectance form Undoped GaAs”, Appl. Phys. Lett., Vol. 59, No. 3, pp. 321-323 (1991).

.Shen, H., P. Parayanthal, Y. F. Lin, and F. H. Pollak, “New Normalization Procedure for Modulation Spectroscopy”, Rev. Sci. Instum., Vol. 58, No. 8, pp. 1429-1432 (1987).

.Bian, L. F., D. S. Jiang, P. H. Tan, S. L. Lu, B. Q. Sun, L. H. Li, and J. C. Harmand, “Photoluminescence Characteristics of GaAsSbN/GaAs Epilayers Lattice-matched to GaAs Substrates”, Solid State Comm., Vol. 132, No. 10, pp. 707-711 (2004).

.Harmand, J. C., A. Caliman, E. V. K. Rao, L. Largeau, J. Ramos, R. Teissier, G. Ungaro, B. Theys, and I. F. L. Dias, “GaNAsSb: How does it Compare with Other Dilute III-V-nitride Alloys?”, Semicond. Sci. Technol., Vol. 17, No. 8, pp. 778-784 (2002).

.Ferrini, R., M. Geddo, G. Guizzetti and M. Patrini, “Interband Optical Properties of Molecular Beam Epitaxially Grown GaAs1-xSbx on GaAs Substrates”, J. Appl. Phys., Vol. 86, No. 8, pp. 4706-4708 (1999).

.Ihm, Y. E., N. Otsuka, and J. Klem, “Ordering in GaAs0.5Sb0.5 Grown by Molecular Beam Epitaxy”, J. Vac. Sci. Technol. B., Vol. 6, No. 2, pp. 737-744 (1987).

39.Li, C. F., D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, ”Temperature Dependence of Quantized States in an In0.86Ga0.14As0.3P0.7/InP Quantum Well Hetrostructure”, J. Appl. Phys., Vol. 81, No. 1, pp. 400-405 (1997).

.Lin, D. Y., F. C. Lin, Y. S. Huang, H. Qiang, Fred H. Pollak, D. L. Mthine, and G. N. Maracas, “Piezoreflectance and Photoreflectance Study of GaAs/AlGaAs Digital Alloy Compositional Graded Structures”, J. Appl. Phys., Vol. 79, No. 1, pp. 460-466. (1996).

.Mathieu, H., J. Allegre, and B. Gil, “Piezomodulation Spectroscopy: A Powerful Investigation Tool of Hetrostructures”, Phys. Rev. B, Vol. 43, No. 3, pp. 2218-2227 (1991).

.Chen, T. T., C. H. Chen, W. Z. Cheng, W. S. Su, M. H. Ya, and Y. F. Chen, “Optical Studies of Strained Type II GaAsSb/GaAs Multiple Quantum Wells”, J. Appl. Phys., Vol. 93, No. 12, pp. 9655-9658 (2003).

43.Varshni, Y. P., “Temperature Dependence of Energy Gap in Semiconductors”, Physica, Vol. 34, No. 1, pp. 149-154 (1967).

.Lantenschlager, P., M. Garriga, S. Logothetidis, and M. Cardona, “Interband Critical Points of GaAs and Their Temperature Dependence”, Phys. Rev. B, Vol. 35, No. 17, pp. 9174-9189 (1987).

45.Malikova, L., W. Krystek, F. H. Pollak, N. Dai, A. Cavus, and M. C. Tamargo, “Temperature dependence of the direct gaps of ZnSe and Zn0.56Cd0.44Se”, Phys. Rev. B, Vol. 54, No. 3, pp. 1819-1824 (1996).

46. Mun˜oz , M., F. H. Pollak, M. B. Zakia, N. B. Patel, and J. L. Herrera-Pe´rez, “Temperature dependence of the energy and broadening parameter of the fundamental band gap of GaSb and Ga1-yInxAsySb1-y/GaSb (0.07≦x≦0.22, 0.05≦y≦0.19) quaternary alloysusing infrared photoreflectance”, Phys. Rev. B, Vol.62, No. 24, pp. 600-604 (2000).

.Chouaib, H., C. Bru-Chevallier, G. Guillot, H. Lahreche and P. Bove, “Photoreflectance Study of GaAsSb/InP Heterostructures”, J. Appl. Phys., Vol. 98, No. 12, pp. 123524-1~123524-7 (2005).

.Lukic-Zrnic, R., B. P. Gorman, R. J. Cottier, T. D. Golding, C. L. Littler, and A. G. Norman, “Temperature Dependence of the Band Gap of GaAsSb Epilayers”, J. Appl. Phys., Vol. 92, No. 11, pp. 6939-6941 (2002).

.Panish, M. B., and H. C. Casey, “Temperature Dependence of Energy Gap in GaAs and GaP”, J. Appl. Phys., Vol. 40, No. 1, pp. 163-167 (1969).

.Grenouillet, L., C. Bru-Chevallier, G. Guillot, P. Gilet, P. Ballet, P. Duvaut, G. Rolland, and A. Million, “Rapid Thermal Annealing in GaNxAs1-x/GaAs Structures:Effect of Nitrogen Recoganization on Optical Properties”, J. Appl. Phys. Vol., 91, No. 9, pp. 5902-5908 (2002).

.Wicaksono, S., S. F. Yoon, and W. K. Loke, “The Effect of Rapid Thermal Annealing on GaAsSbN Quantum-Well and GaAsSbN Bulk Lattice Matched to GaAs”, Internation Conference on Indium Phosphide and Related Materials., pp. 421-423 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊