(3.210.184.142) 您好!臺灣時間:2021/05/13 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳奎羽
研究生(外文):Kuei-yu Chen
論文名稱:利用有機金屬化學氣相沉積法成長二氧化釕/二氧化鈦異質奈米結構晶體在(100)-藍寶石基板與其特性分析
論文名稱(外文):Growth and structural characterization of RuO2/TiO2 hetero-nanocrytal on Sapphire(100) substrate via MOCVD
指導教授:黃鶯聲
指導教授(外文):Y.S. Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:77
中文關鍵詞:有機金屬化學氣相沉積法二氧化釕二氧化鈦異質奈米結構晶體
外文關鍵詞:TiO2MOCVDRuO2hetero-nanocrytal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用[(CH3CH2)C5H4]2Ru以及[OCH(CH3)2]4 Ti當前驅物,於冷壁式有機金屬化學氣相沉積系統中成長二氧化釕以及二氧化鈦奈米晶體並將二氧化釕奈米柱直接成長於二氧化鈦奈米柱上,並利用場發射式電子顯微鏡、X光繞射儀及拉曼散射光譜儀,來探討二氧化釕使用不同的成長條件,對其異質接面奈米結構的表面形貌、晶體結構以及光學特性。
場發射式電子顯微鏡觀察出二氧化釕奈米柱以及二氧化鈦奈米柱在(100)-藍寶石基板上都是垂直成長;二氧化釕奈米柱在金紅石結構二氧化鈦奈米柱以及銳鈦礦結構二氧化鈦奈米柱上成長發現都有傾斜35�謇漲赤禶磽赤灡伅〝啋齯浀茯O出現垂直方向的成長。
X光繞射儀的結果指出在(100)-藍寶石基板上二氧化釕、金紅石結構二氧化鈦的成長方向為[001],以及銳鈦礦結構二氧化鈦的成長方向為[110];二氧化釕奈米柱成長在金紅石結構二氧化鈦奈米柱上會往[101]的方向成長;二氧化釕奈米柱成長在銳鈦礦結構二氧化鈦奈米柱上有[110] 、[101]的方向成長。而當成長時間拉長時會都出現[001]的成長方向。
此外我們利用拉曼散射量測,決定二氧化鈦之晶相:(金紅石結構、銳鈦礦結構,或兩相共存);並探討討所成長之二氧化釕奈米結構之尺寸與殘留應力,所產生之效應。
由於上述的結果,我們成功將一維奈米結構的材料成長在一維奈米結構上,成為異質奈米結構。
We report a detailed study of growth and characterization of RuO2 nanorods (NRs) on top of rutile (R)-TiO2(001) or anatase (A)-TiO2(110) NRs on sapphire(100) substrates via metal organic chemical vapor deposition (MOCVD). The source reagents are [(CH3CH2)C5H4]2Ru and titanium (IV) i-propoxide (Ti[OCH(CH3)2]4, (TTIP)). The surface morphology, structural and spectroscopic properties of the as-grown nanostructures were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and micro-Raman spectroscopy.
FESEM micrographs reveal the growth of well-aligned RuO2 NRs on top of R-TiO2 NRs and A-TiO2 NRs. XRD patterns indicate that RuO2 NRs grown on R-TiO2 NRs has a preferable alignment along the direction of [101], while RuO2 NRs grown on top of A-TiO2 NRs show coexistence of (110) and (101) orientations. Micro-Raman spectra depict the red-shift and peak broadening of RuO2 signatures with respect to that of the bulk counterpart which can be attributed to both the size and residual stress effects. The probable mechanisms for the formation of well-aligned RuO2/TiO2 heteronanostructures are presented and discussed.
中文摘要……………………………………………………...…………I
英文摘要……………………………………………………..…………Ⅲ
目錄…………………………………………………………..…………Ⅳ
圖索引………………………………………………………..…………Ⅵ
誌謝…………………………………………………………………..ⅩⅢ
第一章 緒論.............................................................................................1
1.1二氧化釕…………………………………………………….......1
1.2二氧化鈦…………………………………………………………3
1.3奈米結構探討……………………………………………..……..6

第二章 實驗方法與步驟………………………………………………10
2.1 樣品製備…………………………………………………...….10
2.1.1實驗藥品及規格……………………………….….……..10
2.1.2有機金屬化學氣相沉積(MOCVD)設備……….….…….11
2.1.3 二氧化釕與二氧化鈦奈米柱沉積步驟……….……….12
2.2 特性分析方法…………………………………………………13
第三章二氧化釕與二氧化鈦奈米結構之成長與特性分析….…….…15
3.1 二氧化釕奈米結構之成長………………..…………………..15
3.2 二氧化鈦奈米結構之成長……………………………………22
3.3 二氧化釕/二氧化鈦異質奈米結構之成長與特性分析…..….30
3.3.1二氧化釕/金紅石結構二氧化鈦異質奈米結構之
成長與特性分析…………………………………….30
3.3.2 二氧化釕/二氧化鈦銳鈦礦結構異質奈米結構之
成長與特性分析……………………………………..52
第四章 結論…………………………………………………………..70
參考文獻………………………………………………………………71
作者簡介………………………………………………………………77
1. JCPDS card no. 21-1172, International Centre for Diffraction Data, Newtown Square, PA, USA.

2. Ryden, W. D., A. W. Lawson, and C. C. Sartain, “ Electrical Transport Properties of IrO2 and RuO2”, Phys. Rev. B, Vol. 1, No. 4, pp. 1494-1500 (1970).

3. Krusin-Elbaum, L., M. Wittmer, and D. S. Yee, “Characterization of Reactively Sputtered Ruthenium Dioxide for Very Large Scale Integrated Metallization”, Appl. Phys. Lett., Vol. 50, No. 26, pp. 1879-1881 (1987).

4. Green, M. L., M. E. Gross, L. E. Papa, K. J. Schnoes, and D. Brasen, “Chemical Vapor Deposition of Ruthenium and Ruthenium Dioxide Films”, J. Electrochem. Soc., Vol. 132, No. 11, pp. 2677-2685 (1985).

5. Vadimsky, R. G., R. P. Frankenthal, and D. E. Thompson, “Ru and RuO2 as Electrical Contact Materials: Preparation and Environmental Interactions”, J. Electrochem. Soc., Vol. 126, No. 11, pp. 2017-2023 (1979).

6. Kolawa, E. F., C. T. So, E. T-S. Pan, and M-A. Nicolet, “Reactively Sputtered RuO2 Diffusion Barriers”, Appl. Phys. Lett., Vol. 50, No. 13, pp. 854-855 (1987).

7. Belkind, A., Z. Orban, J. L. Vossen, and J. A. Woolban, “Optical Properties of RuO2 Films Deposited by Reactive Sputtering”, Thin Solid Films, Vol. 207, No. 1-2, pp. 242-247 (1992).

8. Wittmer, M., “Barrier Layers: Principles and Applications in Microelectronics”, J. Vac. Sci. Technol. A, Vol. 2, No. 2, pp. 273-280 (1984).

9. Jia, Q. X., and W. A. Anderson, “Sputter Deposition of Yba2Cu3O7-x Films on Si at 500 oC with Conducting Metallic Oxide as a Buffer Layer”, Appl. Phys. Lett. Vol. 57, No. 3, pp. 304-306 (1990).

10. Jia, Q. X., and W. A. Anderson, “Conducting Metallic Oxide Contacts on Superconducting YBa2Cu3O7-x Thin Films”, IEEE Trans. Compon. Hybrids Manuf. Technol. Vol. 15, No. 1, pp. 121-125 (1992).

11. Bursill, L. A., M. Reaney, D. P. Vijay, and S. B. Desu, “Comparison of Lead Zirconate Titanate Thin Films on Ruthenium Oxide and Platinum Electrodes”, J. Appl. Phys., Vol. 75, No. 3, pp. 1521-1525 (1994).

12. Al-Shareef, H. N., K. R. Bellur, A. I. Kingon, and O. Auciello, “Influence of Platinum Interlayers on the Electrical Properties of RuO2/Pb (Zr0.53Ti0.47)O3/RuO2 Capacitor Heterostructures”, Appl. Phys. Lett., Vol. 66, No. 2, pp. 239-241 (1995).

13. Takemura, K., T. Sakuma, and Y. Miyasada, “High Dielectric Constant (Ba,Sr)TiO3 Thin Films Prepared on RuO2/Sapphire”, Appl. Phys. Lett., Vol. 64, No. 22, pp. 2967-2969 (1994).

14. Lee, J. G., S. K. Min, and S. H. Choh, “Deposition and Properties of Reactively Sputtered Ruthenium Dioxide Thin Films as an Electrode for Ferroelectric Capacitors”, Jpn. J. Appl. Phys., Vol. 33, No. 12B, pp. 7080-7085 (1994).

15. Bernstein, S. D., T. Y. Wong, Y. Y. Kisler, and R. W. Tustison, “Fatigue of Ferroelectric PbZrxTiyO3 Capacitors with Ru and RuOx Electrodes”, J. Mater. Res., Vol. 8, No. 1, pp. 12-13 (1993).

16. Jia, Q. X., L. H. Chang, and W. A. Anderson, “Surface and Interface Properties of Ferroelectric BaTiO3 Thin Films on Si using RuO2 as an Electrode”, J. Mater. Res., Vol. 9, No. 10, pp. 2561-2565 (1994).

17. Fujishima, A., and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, Vol. 238, pp. 37-38 (1972).

18. Serpone , N., “Brief Introductory Remarks on Heterogeneous Photocatalysis”, Sol. Energy Mater. Sol. Cells, Vol. 38, No. 1-4, pp. 369-379 (1995)

19. Litter, M. I., “Review Heterogeneous Photocatalysis Transition Metal Ions in Photocatalytic Systems”, Appl. Catal., B, Vol. 23, No. 2-3, pp. 89-114 (1999).

20. 謝永旭,“光催化處理程序”,工業污染防治,第56期,第173-191頁,民國84年十月。

21. Mills, A., and S. Le Hunte, “An Overview of Semiconductor
Photocatalysis”, J. Photochem. Photobiol., A, Vol. 108, No. 1, pp. 1-35 (1997).

22. Labouriau, A., and W. L. Earl, “Titanium Solid-State NMR in
Anatase,Brookite and Rutile”, Chem. Phys. Lett., Vol. 270, No 3-4, pp. 278-284 (1997).

23. Sekiya, T., S. Ohta, S. Kamei, M. Hanakawa, and S. Kurita, “Raman
Spectroscopy and Phase Transition of Anatase TiO2 Under High
Pressure”, J. Phys. Chem. Solids, Vol. 62, No. 4, pp. 717-721 (2001).

24. Hossks, N.,T. Sekiya, and S. Kurita, “Excitonic State in Anatase TiO2
Single Crystal”, J. Lumin., Vol. 72-74, pp. 874-875 (1997).

25. Swamy, V., and L. S. Dubrovinsky, “Bulk Modulus of Anatase”, J. Phys. Chem. Solids, Vol. 62, No. 4, pp. 673-675 (2001).

26. Okimura, K., “Low Temperature Growth of Rutile TiO2 Films in
Modified RF Magnetron Sputtering”, Surf. Coat. Technol., Vol. 135, No. 2-3, pp. 286-290 (2001).

27. Burgess, D. R., T. J. Anderson, P. A. Morris Hotsenpiller, and J. L.
Hohman, “ Solid Precursor MOCVD of Heteroepitaxial Rutile Phase TiO2 ”, J. Cryst. Growth, Vol. 166, No. 1, pp. 763-768 (1996).

28.JCPDS card no. 77-0441, International Centre for Diffraction Data, Newtown Square, PA, USA

29.JCPDS card no. 83-2243, International Centre for Diffraction Data, Newtown Square, PA, USA.

30. Ma, W., Z. Lu, and M Zhang , “Investigation of Structural Transformations in Nanophase Titanium Dioxide by Raman Spectroscopy”, Appl. Phys. A Vol. 66, No. 6, pp. 621-627 (1998)

31. Morales, A. M., and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science, Vol. 279, No. 5348, pp. 208-211 (1998).

32. Wang, N., Y. F. Zheng, Y. H. Tang, C. S. Lee, and S. T. Lee, “SiO2-Enhanced Synthesis of Si Nanowires by Laser Ablation”, Appl. Phys. Lett. Vol. 73, No. 26, pp. 3902-3904 (1998).

33. Shi, W. S., Y. F. Zheng, Y. H. Tang, C. S. Lee, and S. T. Lee, “Oxide-Assisted Growth and Optical Characterization of Gallium-Arsenide Nanowires”, Appl. Phys. Lett., Vol. 78, No. 21, pp. 3304-3306 (2001).

34. Wang, J., M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires”, Science, Vol. 293, No. 5534, pp. 1455-1457 (2001).

35. Kim, H. M., D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, and K. S. Chung, “Growth of GaN Nanorods by a Hydride Vapor Phase Epitaxy Method”, Adv. Mater., Vol. 14, No. 13-14, pp. 991-993 (2002).

36. Chen, C. C., and C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires”, Adv. Mater., Vol. 12, No. 10, pp. 738-741 (2000).

37. Huang, M. H., S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and Y. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, Vol. 292, No. 5523, pp. 1897-1899 (2001).

38. Huang, M. H., Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater., Vol. 13, No. 2, pp. 113-116 (2001).

39. Wu, J. J., and S. C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater. Vol. 14, No. 3, pp. 215-218 (2002).

40. Wu, J. J., and S. C. Liu, “Catalyst-Free Growth and Characterization of ZnO Nanorods”, J. Phys. Chem. B, Vol. 106, No. 37, pp. 9546-9551 (2002).

41. Yang, P., and C. M. Lieber, “Nanorod-Superconductor Composites: A Pathyway to Materials with High Critical Current Densities”, Science, Vol. 273, No. 5283, pp. 1836-1840 (1996).

42. Zhu, Y. Q., W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton, and H. Terrones, “SiC-SiOx Heterojunctions in Nanowires”, J. Mater. Chem., Vol. 9, No. 12, pp. 3173-3178 (1999).

43. Bai, Z. G., D. P. Yu, H. Z. Zhang, Y. Ding, Y. P. Wang, X. Z. Gai, Q. L. Hang, G. C. Xiong, and S. Q. Feng, “Nano-Scale GeO2 Wires Synthesized by Physical Evaporation”, Chem. Phys. Lett., Vol. 303, No. 3-4, pp. 311-314 (1999).

44. Choi, Y. C., W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge”, Adv. Mater., Vol. 12, No. 10, pp. 746-750 (2000).

45. Chen, R. S., Y. S. Huang, Y. M. Liang, D. S. Tsai, and K. K. Tiong, “Field Emission from Vertically Aligned Conductive IrO2 Nanorods”, Appl. Phys. Lett., Vol. 84, No. 9, pp. 1552-1554 (2004).

46. Chen, R. S., Y. S. Huang, Y. M. Liang, D. S. Tsai, Y. Chi, and J. J. Kai, “Growth Control and Characterization of Vertically Aligned IrO2 Nanorods”, J. Mater. Chem., Vol. 13, No. 10, pp. 2525-2529 (2003).

47. Tomkiewicz, M., Y. S. Huang, and F. H. Pollak, “The Potential of Zero Charge of Oriented Single-Crystal RuO2 in Aqueous Electrolytes”, J. Electrochem. Soc. ,Vol. 130, No. 7, pp. 1514-1518 (1983).

48. Chalamala, B. R., Y. Wei, R. H. Reuss, S. Aggarwal, B. E. Gnade, R. Ramesh, J. M. Bernhard, E. D. Sosa, and D. E. Golden, “Effect of Growth Conditions on Surface Morphology and Photoelectric Work Function Characteristics of Iridium Oxide Thin Films”, Appl. Phys. Lett., Vol. 74, No. 10, pp. 1394-1396 (1999).

49. Cha, S. Y., and H. C. Lee, “Deoxidization of Iridium Oxide Thin Film”, Jpn. J. Appl. Phys., Part 2, Vol. 38, No. 10A, pp. L1128-L1130 (1999).

50. Chen, R. S., Y. S. Huang, Y. L. Chen, and Y. Chi, “Preparation and Characterization of RuO2 Thin Films from Ru(CO)2(tmhd)2 by Metalorganic Chemical Vapor Deposition”, Thin Solid Films, Vol. 413 , No. 1-2, pp. 85-91 (2002).

51. Blondeau G., and J. Electrochem, “Influence of Copper Addition on Optical Properties of TiO2”, Soc., Vol. 126, NO. 9, pp. 1592-1596 (1979)

52. Carl. P. Fictorie,“Kinetic and Mechanistic Study of The Chemical Vapor Deposition of Titanium Dioxide Thin Films Using Tetrakis-( isopropoxo )-Tita-nium(IV)”, J. Vac. Sci. Technol., Vol. 12, No. 4, pp. 1108-1113 (1994).

53. Hirofumi Takikawa, “Properties of Titanium Oxides Film Prepared by Reactive Cathodic Vacuum Arc Deposition”, Thin Solid Films, Vol. 348, No. 1-2, pp. 145-151 (1983).
54. Yeung, K. S., and Y. W. Lan, “A Simple Chemical Vapor Deposition Method for Depositing Thin TiO2 films”, Thin Solid Films, Vol. 109, No. 2, pp. 169-178 (1983).

55. Kiichiro Kamata, “Rapid Formation of TiO2 Films by a Conventional CVD Method”, J. Mater. Sci. Lett., Vol. 9, No. 3, pp. 316-319 (1990).

56. Xia, X., P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications” Adv. Mater., Vol. 15, No. 5, pp. 353-389 (2003).

57. Yang, P., Y. Wu, and R. Fan, “ Inorganic Semiconductor Nanoeires”, Int. J. Nanosci, Vol. 1, No. 1, pp. 1-39 (2002).

58. He, R., M. Law, R. Fan, F. Kim, and P.Yang, “ Functional Bimorph Composite Nanotapes ”, Nano Lett, Vol. 2, No. 10, pp. 1109-1112 (2002).

59. Ducati, C., S. Han, C. Li, Z. Liu, B. Lei, D. Zhang, W. Jin, X. Liu, T. Tang, and C. Zhou, “Transition Metal Oxide Core-Shell
Nanowires: Generic Synthesis and Transport Studies” Nano Lett. Vol. 4, No. 7, PP. 1241-1246 (2004).

60. Zhang, J. M. D., Z. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour, and C. Zhou, “ Magnetite (Fe3O4) Core-Shell Nanowires: Synthesis and Magnetoresistance ”, Nano Lett, Vol. 4, No. 11, pp. 2151-2155 (2004).

61. Lin, H. M., Y. L. Chen, J. Yang, Y. C. Liu, K.A.M. Yin, J. j. Kai, F. R. Chen, L. C. Chen, Y. F. Chen, and C. C.Chen, “Synthesis and Characterization of Core-Shell GaP@GaN and GaN@GaP Nanowires” , Nano Lett, Vol. 3, No. 4, pp. 537-541 (2003).

62. Huang, Y. S., and F. H. Pollak, “Raman Investigation of Rutile RuO2”, Solid State Commun., Vol. 43, No. 12, pp. 921-924 (1982).

63. Mar, S. Y., C. S. Chen, Y. S. Huang, and K. K. Tiong, “Characterization of RuO2 Thin Film by Raman Spectroscopy”, Appl. Surf. Sci., Vol. 90, No. 4, pp. 497-504 (1995).

64. Ma, W., Z. Lu, M. Zhang, “Investigation of Structural Transformations in Nanophase Titanium Dioxide by Raman Spectroscopy”, Appl.Phys. A, Vol. 66, No. 6, pp. 621-627 (1998)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔