(3.238.96.184) 您好!臺灣時間:2021/05/08 21:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林育生
研究生(外文):Yu-Sheng Lin
論文名稱:主動式有機發光二極體顯示器亮度均勻性改善之畫素電路設計與模擬
論文名稱(外文):Improvement of Brightness Uniformity by New AMOLED Pixel Circuits Design and Simulation
指導教授:范慶麟
指導教授(外文):Ching-Lin Fan
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:116
中文關鍵詞:低溫複晶矽薄膜電晶體畫素電路設計主動式矩陣有機發光二極體
外文關鍵詞:active matrix organic light emitting diodelow temperature poly-Si thin film transistorpixel circuit design
相關次數:
  • 被引用被引用:2
  • 點閱點閱:333
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機電激發光二極體(OLED)憑藉著其元件的優越條件;反應速度快、高亮度、高對比,逐漸在平面顯示器的市場上佔有一席之地,其輕薄短小的特色,更是顛覆了LCD顯示器的概念。目前有機電激發光二極體的發展方向,除了低階的被動式產品之外,更值得去研究發展的是主動式全彩化的中大型面板,朝向大尺寸、高解析度、高亮度、高對比度、低功率消耗等目標去研究。但OLED材料壽命、元件性能差異問題,成為發展的一大阻礙。再者,由於低溫多晶矽薄膜電晶體(LTPS-TFT)電特性變異極大,嚴重阻礙面板畫面亮度之均勻性。造成畫面品質變差。因此,為了解決這個問題,需要設計更先進的畫素驅動電路來達到高功能OLED面板的目標。
為了進一步的提升主動矩陣有機發光二極體(AMOLED)之顯示品質,我們先從各種補償電路的方法進行評估。雖然數位驅動方式可同時校正截止電壓以及載子移動率之變異性,但受限於製程能力以及驅動速度,因而不適用於高階產品,故非未來趨勢。而類比驅動方式可分為電流驅動及電壓驅動,其中,電流驅動具有同時校正截止電壓以及載子移動率之優點,並且可直接控制灰階,但缺點為驅動速度較慢,且源極驅動電路設計會因此更為複雜。相較於前兩種驅動方式,電壓驅動方式因結構簡單,對於未來朝向高解析度及低成本之技術應用上較具潛力。傳統的畫素架構(2T1C),經由實際量測結果,可以很清楚地瞭解當驅動之低溫多晶矽薄膜電晶體的截止電壓有所不同時,以及有機發光二極體之陽極電壓在長時間使用下也會因為OLED材料劣化而有跨壓提昇的問題存在,因而造成輸出電流的不同,也同時導致畫面亮度之不均勻的情況發生。
本論文藉由說明OLED面板搭配LTPS-TFT的技術提出三種新的電壓型畫素補償電路,這些電路能夠解決上述兩項問題,使得大型化、高解析度的主動式有機電激發光二極體顯示器變得不再遙不可及。
首先,我們先對傳統畫素驅動電路(2T1C)進行模擬與討論。根據電路模擬的結果,傳統畫素架構易受不同薄膜電晶體特性的影響而造成有機發光二極體面板亮度的不均勻,且有機發光二極體電流的平均錯誤率高達37.8 %。
為了要克服傳統畫素架構之不均勻性的問題,我們提出了一個新的電壓補償主動有機發光二極體之畫素電路與兩個修正的畫素電路,分別為6T1C畫素電路4T1C畫素電路和3T1C畫素電路。6T1C畫素電路為初步基礎的設計,模擬結果顯示其有機發光二極體電流的平均錯誤率僅1.28 %,因此可以使有機發光二極體電流與驅動電晶體(driving TFT)之臨界電壓(threshold voltage)幾乎無關。為了要改善6T1C畫素電路之開口率(aperture ratio)問題,藉由改變電路控制訊號我們可以去掉其中二顆電晶體使其成為4T1C畫素電路。模擬結果顯示其有機發光二極體電流的平均錯誤率僅1.62 %,因此本畫素電路可以成功地補償驅動電晶體之臨界電壓變異。此外,上述兩個電路(6T1C,4T1C)在進行OLED跨壓劣化之模擬時,有機薄膜電晶體電流錯誤率皆可降低至7 %以下,因而補償了OLED材料在長時間使用下對輸出電流的影響。
為了要改善4T1C畫素電路有機發光二極體電流的平均錯誤率與增加其開口率,我們又去掉一顆電晶體而提出了3T1C畫素電路。模擬結果顯示在OLED跨壓劣化模擬時,有機薄膜電晶體電流錯誤率更可再降低至5 %。因此3T1C畫素電路不僅有效地改善了由多晶矽薄膜電晶體特性不同所造成的不同臨界電壓之問題也改善了OLED材料劣化對輸出電流造成的影響。
因此,本篇論文所提出的三個補償畫素電路均可有效地改善因驅動電晶體不同臨界電壓與OLED材料劣化所造成面板發光亮度不均勻的問題。與傳統的畫素結構(2T1C)相比,這些補償畫素電路都可以大幅提升面板亮度的均勻性,因此在未來之主動有機發光二極體面板應用上極具潛力。
Organic Light Emitting Diode (OLED) with fast response, high brightness and high contrast plays an important role gradually in the further market of flat penal display (FPD). The characteristics of OLED displays like as bright light、thin、short、small subverts the concept of LCD displays. Recently, the developing direction of OLED displays, besides passive form products in the low steps, it is active and full-color medium-and-large-sized panel that is more worth studying development, orientation large size ,high resolution, high brightness, high contrast ratio, low power consumption, etc. goal study. But the life time of organic materials become the obstruction on the further development of OLED-FPD. In addition, the non-uniformity of OLED Panel could cause the quality of frames worse. Hence, for solve the problem. More powerful pixel driving circuits will be designed for achieving the high performance of OLED based FPD.
In order to further enhance the image quality of AMOLEDs, the different driving methods have been compared and evaluated. Although digital driving methods can compensate the variation of threshold voltage and mobility, it is not suitable for them to be applied to high resolution products due to the limited process ability and the high driving speed. Analog driving circuits can be divided into current programmed circuits and voltage programmed circuits. Current programmed circuits not only can compensate the variation of threshold voltage and mobility but can control the gray scale directly. However, they have the limitation of the writing time and the data driver IC needs more complicated design. Compared with digital driving method and current programmed method, voltage programmed circuits show great potential for high resolution and low cost applications in the future because of the simple structure. By means of experimental results of conventional pixel design (2T1C), because of the variation of threshold voltages in LTPS-TFTs, and the shift in the voltage across OLED raise the source voltage of the driving TFT are obtained. As a result, the different current flow through OLED would result in the non-uniform brightness across the panel.
This thesis is by proving that the technology of using LTPS-TFT of OLED panel proposes three new voltage programmed circuits. These circuits can solve above-mentioned two problems and make the large size and high resolution for AM-OLED displays more easily.
At first, conventional 2T1C circuit is simulated and discussed. Simulation results show that conventional 2T1C pixel circuit has high non-uniformity due to the various characteristics of TFTs. The average error rate of the OLED current is up to 37.8 %.
In order to overcome the non-uniformity problem of conventional 2T1C circuit, we propose a new voltage programming AMOLED pixel design and two modified pixel circuits, which are composed of 6T1C, 4T1C, and 3T1C. The 6T1C circuit is the basic design in the beginning and the simulation result shows the average error rate of the OLED current is about 1.28 % in the 6T1C circuit. Consequently, it is apparently that the OLED current is independent of the variation of threshold voltage. In order to improve the aperture ratio of 6T1C circuit, the 4T1C circuit is the first modified design by eliminate two TFTs. It shows that the average error rate of the OLED current is only 1.62 % in the 4T1C pixel circuit. As a result, it is apparently that the 4T1C circuit can successfully compensate for the threshold voltage variation of driving TFT. Furthermore, both 6T1C and 4T1C pixel circuits can also decrease the error rate of the OLED current below 7 % when the voltage across OLED are raised, which compensate for aging phenomena of the OLED degradation leading to degradation of pixel luminance over time. In order to improve the error rate of OLED current and the aperture ratio of 4T1C circuit, the 3T1C circuit is the second modified design by eliminate another TFT. It shows that the error rate of the OLED current can be further decreased to 5 % when the voltage across OLED are raised. Therefore, the simulation results demonstrate that the 3T1C circuit has high immunity to the threshold voltage deviation of poly-Si TFT characteristics and the shift in the voltage across OLED leading to degradation of pixel luminance over time.
Therefore, these three proposed pixel circuits all successfully compensate for the threshold voltage variation of driving TFT and the shift in the voltage across OLED. So these proposed pixel circuits can improve the current non-uniformity for AMOLED compared with conventional pixel circuit. Therefore, they could be the promising candidates for the AMOLED panel application in the future.
Contents

Abstract (Chinese) I
Abstract (English) IV
Acknowledgement VIII
Table of Contents IX
Figure Caption XII
Table List XVI

Chapter 1 Introduction 1

1.1 The Role of OLED in Flat Panel Displays 1
1.2 The History and Status of OLED 2
1.3 The Structure and Operation Theory of OLEDs 4
1.3.1 Operation Theory 4
1.3.2 Structure 6
1.4 Motivation 9
1.5 Thesis Organization 12

Chapter 2 Related Techniques and Characterization for OLED 14

2.1 Introduction 14
2.2 Display Architecture for OLED 16
2.3 Transistor Technologies 17
2.3.1 Amorphous Silicon 18
2.3.2 Poly Silicon 18
2.4 Emission Structures for AMOLED 20
2.4.1 Bottom Emission Structure 20
2.4.2 Top Emission Structure 21
2.4.3 Top and Bottom Emission (Transparent) Structure 22
Chapter 3 Overview of AMOLED Pixel Circuit Design 24

3.1 The Category 24
3.2 Digital Driving method 25
3.2.1 Time-Ratio Gray-Scale Pixel Circuit 25
3.2.2 Area-Ratio Gray-Scale Pixel Circuit 26
3.3 Analog Driving method 28
3.3.1 Current Programming Pixel Circuit 28
3.3.2 Voltage Programming Pixel Circuit 30

Chapter 4 Conventional 2T1C Circuit for AMOLEDs 32

4.1 Introduction 32
4.2 AIM-SPICE and Poly-Si TFT Model 33
4.2.1 AIM-SPICE 33
4.2.2 Poly-Si TFT Model 33
4.3 Conventional 2T1C Pixel Circuit 34
4.3.1 Circuit Operation 34
4.3.2 Simulation Result and Discussion 35
4.4 Summary 43

Chapter 5 Proposed Circuits Analysis and Simulation 44

5.1 Introduction 44
5.2 A New Voltage Programming Pixel Circuit with LTPS-TFTs for AMOLEDs 46
5.2.1 Circuit Operation 46
5.2.2 Simulation Result and Discussion 49
5.3 Modified Voltage Programming Pixel Circuit (I) 59
5.3.1 Circuit Operation 59
5.3.2 Simulation Result and Discussion 62
5.4 Modified Voltage Programming Pixel Circuit (II) 72
5.4.1 Circuit Operation 72
5.4.2 Simulation Result and Discussion 75
5.5 Summary 85

Chapter 6 Conclusion and Future Work 87

6.1 Conclusion 89
6.2 Future Work 89

References 90
[1] H. S. KOO, 13th FPD Manufacturing Technology Expo & Technical Conference Japan, (2003) Technical Digest, Invited Talking (2003).
[2] Lawrence E. Tannas, “The Ultimate Avionics Display”, SID ’00 DIGEST, pp. 1145-1147, 2000.
[3] Sixto Ortiz Jr, “New monitor technologies are on display”, Computer, vol:36, pp. 13-16, 2003.
[4] Collins. L, “Roll-up displays: fact or fiction? “, IEE Review, Volume: 49, pp. 42–45, 2003.
[5] L. S. Hung, C. W. Tang and M. G. Mason, Appl. Phys. Lett, 70 (1997) 152.
[6] J. Kido and Y. lizumi, Appl. Phys. Lett, 73 (1998) 2771.
[7] Chien-Ci Chu, “A study of blue organic light emitting diodes with bipolar transport layers,” Department of Electronic Engineering ISU 2001.
[8] Chien-Hung Chou, “Efficiency improvement of blue organic light emitting diodes by multi-layer structure,” Department of Electronic Engineering ISU 2003.
[9] Oana D. Jurchescu, Jacob Baas, and Thomas T.M. Palstra, “Effect of impurities on the mobility of single crystal pentacene,” Appl. Phys. Lett., vol.84, p.3061, 2004.
[10] Liu S.W. , Huang C.A. , Lee J.H. , Yang K.H. , Chen C.C. , and Chang Y. , “Blue mixed host organic light emitting devices,” Thin Solid Films Vol. 453-454, p.312, 2004.
[11] Nalwa, H. S., and Rohwer, L. S., “Handbook of Luminescence, Display Materials, and Devices”, American Scientific Publishers, 2003.
[12] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Prache, “Polysilicon VGA active matrix OLED displays—Technology and performance,” in IEDM Tech. Dig., 1998, pp. 871–874.
[13] D. Ma, C. S. Lee, S. T. Lee, and L. S. Hung, “Improved efficiency by a graded emissive region in organic light-emitting diodes,” Appl. Phys. Lett., vol. 80, pp. 3641–3643, 2002.
[14] C. W. Tang, and S. Van Slyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, pp.913. 1987.
[15] G. Gu and S. R. Forest, “Design of flat-panel displays based on organic light-emitting devices,” IEEE J. Sel. Topics Quantum Electron., vol. 4, pp. 83–99, Jan. 1998.
[16] R. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R.G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, C.W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875–878.
[17] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE Journal of Display Technology, vol. 1, no. 2, pp. 248–266, Dec. 2005.
[18] G. GU, Stephen R.Forrest, “Design of flat-panel displays based on organic light-emitting devices”, IEEE Journal of selected topics in quantum electronics, pp. 83-99, 1998.
[19] Yi He, Reiji Hattori, Jerzy Kanicki, “Current-source a-Si:H thin-film-transistor circuit for active-matrix organic light-emitting displays”, IEEE ELECTRON DEVICE LETTER ’00, pp. 590-592, 2000.
[20] Takashi Chuman, Satoru Ohta, Satoshi Miyaguchi, Hideo Satoh, Takahisa Tanabe, Yoshiyuki Okuda, Masami Tsuchida, “Active Matrix Organic Light Emitting Diode Panel using Organic Thin-Film Transistors”, SID ’04 DIGEST, pp. 45-47, 2004.
[21] A. G. Lewis, D. D. Lee, and R. H. Bruce, “Polysilicon TFT circuit design and performance”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 21, 12, pp.1833 (1992)
[22] Y. H. Kim, C. Y. Sohn, J. W. Lim, S. J. Yun, C.S. Hwang, C. H. Chung, Y. W. Ko, and J. H. Lee,” High-Performance Ultralow-Temperature Polycrystalline Silicon TFT Using Sequential Lateral Solification”, IEEE Electron Device Lett., 25, 8, pp550 (2004)
[23] Y. Iwata, M. Momodomi, T. Tanaka, H. Oodaira, Y. Itoh, R. Nakayama, R. Kirisawa, S. Aritome, T. Endoh, R. Shirota, K. Ohuchi, and F. Masuoka, AHigh-Density NAND EEPROM with Block-Page Programming for Microcomputer Applications, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 25, 2, pp 417 (1990)
[24] C. Kuo, T. Toms, M. Weidner, H. Choe, D. Shum, K. M. Chang , and P. Smith, “A microcontroller with 100 K bytes embedded flash EEPROM” Solid-State and Integrated Circuit Technology, 1995 4th International Conference on pp. 138-140.
[25] S. H. Ju, S. H. Yu, J. H. Kwon, H. D. Kim, B. H. Kim, S. C. Kim, H. K. Chung, M. S. Weaver, M. H. Lu, R. C. Kwong, M. Hack, and J. J. Brown, “High performance 2.2” QCIF full color AMOLED displays based on electrophosphorescence,” in SID Tech. Dig., 2002, pp. 1096-1099.
[26] Tatsuya Sasaoka, Mitsunobu Sekiya, Akira Yumoto, Jiro Yamada, Takashi Hirano, Yuichi Iwase, Takao Yamada, Tadashi Ishibashi, Takao Mori, Mitsuru Asano, Shinichiro Tamura, and Tetsuo Urabe, “A 13.0-inch AM-OLED display with top emitting structure and adaptive current mode programmed pixel circuit (TAC),” in SID Tech. Dig., 2001, pp. 384-387.
[27] W. K. Kwak, K. H. Lee, C. Y. Oh, H. J. Lee, S. A. Yang, H.E. Shin, and H. K. Chung, “A 5.0-in WVGA AMOLED Display for PDAs,” in SID Tech. Dig., 2003, pp. 100-103.
[28] Tetsuo Urabe, “Technological challenge toward AM-OLED TV,” in Proceedings of International Display Workshops, 2003, pp. 251-254.
[29] Kwan Hee Lee, Seoung Yoon Ryu, Jang Hyuk Kwon, Sang Wook Kim, and Ho Kyoon Chung, “2.2” QCIF full color transparent AMOLED display,” in SID Tech. Dig., 2003, pp. 104-107.
[30] D. Pribhat, F. Palis, “Matrix addressing for organic electroluminescent displays”, Thin Solid Films, 383, pp. 25-30, 2001.
[31] Simon W.-B. Tam, Yojiro Matsueda, Mutsumi Kimura, Hiroshi Maeda, Tatsuya Shimoda , Piero Migliorato “ Poly-Si Driving Circuits for Organic EL Displays”, Electronic Imageing 2001, pp. 4920-4925, 2001.
[32] Mayumi Mizukami, Kazutaka Inukai, Hirokazu Yamagata, Toshimitsu Konuma, Takeshi Nishi, Jun Koyama, Shumpei Yamazaki, Tetsuo Tsutsui, “ 6-bit digital VGA OLED,” in SID Tech. Dig., 2000, pp. 912-915.
[33] Takashi Nanmoto, Hiroyuki Hara, Kasori Takahashi, Takahiro Iwashita, Hiroshi Hirayama, Hideyuki Kawai, Satoshi Inoue, and Tatsuya Shimoda, “Optimization of a time ratio gray scale method for OLED display,” in Proceedings of International Display Workshops, 2003, pp. 263-266.
[34] T. Shimoda, M. Kimura, S. Seki, H. Kobayashi, S. Kanbe, S. Miyashita, R. H. Friend, J. H. Burroughes, C. R. Towns, and I. S. Millard, "Technology for Active Matrix Light Emitting Polymer Displays", IEDM Tech. Dig., pp. 107-110 ,1999.
[35] K. Inukai, H. Kimura, M. Mizukami, J. Maruyama, S. Murakami, J. Koyama, T. Konuma and S. Yamazaki, "4.0-in. TFT-OLED Displays and a Novel Digital Driving Method", SID Tech. Dig., pp. 924-927, 2000.
[36]T. Ouchi, Y. Mikami, T. Satou and N. Kasai, "A 2.2-in. Color TFT-OLED Display Using a Continuous Sub-Field with a Multiplex Scanning System", IDW Tech. Dig., pp. 247-250, 2002.
[37] S. W. B. Tam, M. Kimura, R. Friend, T. Shimoda and P. Migliorato, "A Self-Biased TFT-OLED Pixel Driver Circuit", IDW Tech. Dig., pp. 243-246, 2002.
[38] T. Shimoda, M. Kimura, S. Seki, H. Kobayashi, S. Kanbe, S. Miyashita, R. H. Friend, J. H. Burroughes, C. R. Towns, and I. S. Millard, “Technology for active matrix light emitting polymer displays,” in IEDM Tech. Dig., 1999, pp. 107-110.
[39] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875-878.
[40] Y. Hong, J. Kanicki and R. Hattori, "Novel Poly-Si TFT Pixel Electrode Circuits and Current Programmed Active-Matrix Driving Methods for AM-OLEDs", SID Tech. Dig., pp. 618-621, 2002.
[41] Y. C. Lin, H. P. Shieh and F. Yang, "Current Driving Pixel Circuits for Active Matrix Organic Light Emitting Diode Display", SID Tech. Dig., pp. 610-613, 2002.
[42] S. K. Bhowmick and B. Mazhari, "An Improved Four TFT Circuit for Active-Matrix Organic Light Emitting Diode (OLED) Display", SID Tech. Dig., pp. 606-609, 2002.
[43] M. Shimoda, K. Abe, H. Haga, H. Asada, H. Hayama, K. Iguchi, D. Iga, Y. Iketsu, H. Imura and S. Miyano, "New Pixel-Driving Scheme with Data-Line Pre-Charge Function for Active Matrix Organic Light Emitting Diode Displays", IDW Tech. Dig., pp. 239-242, 2002.
[44] Y. W. Kim, O. K. Kwon, K. N. Kim, D. Y. Shin, B. H. Kim and H. K. Chung, "A New Current Programmable Pixel Structure for Large-Size and High-Resolution AMOLEDs", IDW Tech. Dig., pp. 367-370, 2002.
[45] M. Ohta, H. Tsutsu, H. Takahara, I. Kobayashi, T. Uemura and Y. Takubo, "A Novel Current Programmed Pixel for Active Matrix OLED Displays", SID Tech. Dig., pp. 108-111, 2003.
[46] T. Shirasaki, T. Ozaki, K. Sato, M. Kumagai, M. Takei, T. Toyama, S. Shimoda and T. Tano, "Full-color Polymer AM-OLED Using Ink-jet and a-Si TFT Technologies", SID Tech. Dig., pp. 1516-1517, 2004.
[47] S. J. Ashtiani, P. Servati, D. Striakhilev and A. Nathan, "A 3-TFT Current-Programmed Pixel Circuit for AMOLEDs", IEEE Transactions on Electron Devices, pp. 1514-1518, 2005.
[48] J. Yamashita, K. Uchino, T. Yamamoto, T. Sasaoka and T. Urabe, "New Driving Method with Current Subtraction Pixel Circuit for AM-OLED Displays", SID Tech. Dig., pp. 1452-1455, 2005.
[49] S. J. Bae, H. S. Lee, J. Y. Lee, J. Y. Park and C. W. Han, "A Novel Pixel Design for an Active Matrix Organic Light Emitting Diode Display", IDRC Tech. Dig., pp. 358-361, 2000.
[50] T. Sasaoka, M. Sekiya, A. Yumoto, J. Yamada, T. Hirano, Y. Iwase, T. Yamada, T. Ishibashi, T. Mori, M. Asano, S. Tamura and T. Urabe, " A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC)", SID Tech. Dig., pp. 384-387, 2001.
[51] D. Fish, N. Young, M. Childs, W. Steer, D. George, D. Mcculloch, S. Godfrey, M. Trainer, M. Johnson, A. Giraldo, H. Lifka and I. Hunter, "A Comparison of Pixel Circuits for Active Matrix Polymer/Organic LED Displays", SID Tech. Dig., pp. 968-971, 2002.
[52] S. S. Lo, T. W. Chang and S. T. Lo, "Asymmetric-Vdd Current Mirror Pixel for Active Matrix OLED Displays", SID Tech. Dig., pp. 237-239, 2004.
[53] J. H. Lee, W. J. Nam, S. H. Jung and M. K. Han, "A New Current Scaling Pixel Circuit for AMOLED", IEEE Electron Device Lett., Vol. 25, pp. 280-282, 2004.
[54] J. H. Lee, W. J. Nam, S. M. Han and M. K. Han, "OLED Pixel Design Employing a Novel Current Scaling Scheme", SID Tech. Dig., pp. 490-493, 2003.
[55] J. H. Lee, W. J. Nam, S. H. Jung and M. K. Han, "Current programming pixel circuit and data-driver design for active-matrix organic light-emitting diodes", Journal of the SID, pp. 227-231, 2004.
[56] Sang Hoon Jung, Hee Sun Shin, Jae Hoon Lee and Min Koo Han, “An AMOLED pixel for VT compensation of TFT and a p-type LTPS shift register by employing 1 phase clock signal,” in Proc. SID Tech. Dig., 2005, pp. 300–303.
[57] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W.A. Barrow, E. Dickley, K. Ping, S. Robinson, C.W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu and J. C. Sturm, "The Impact of the Transient Response of Organic Light Emitting Diodes on the Design of Active Matrix OLED Displays", IEDM Tech. Dig., pp. 875-878, 1998.
[58] W. J. Nam, S. H. Jung, K. C. Park and M. K. Han, "Reduction of Control Signal Lines in VTH Variation Compensation Scheme of AM-OLED Driving Circuit", IDW Tech. Dig., pp. 1727-1728, 2001.
[59] S. M. Choi, O. K. Kwon, N. Komiya and H. K. Chung, "A Self-compensated Voltage Programming Pixel Structure for Active-Matrix Organic Light Emitting Diodes", IDW Tech. Dig., pp. 535-538, 2003.
[60] N. Komiya, C. Y. Oh, K. M. Eom, J. T. Jeong, H. K. Chung, S. M. Choi and O. K. Kwon, "Comparison of Vth compensation ability among voltage programming circuits for AMOLED panels", IDW Tech. Dig., pp. 275-278, 2003.
[61] S. M. Choi, O. K. Kwon and H. K. Chung, "An Improved Voltage Programmed Pixel Structure for Large Size and High Resolution AM-OLED Displays", SID Tech. Dig., pp. 260-263, 2004.
[62] N. Komiya, C. Y. Oh, K. M. Eom, Y. W. Kim, S. C. Park and S. W. Kim, "A 2.0-in. AMOLED Panel with Voltage Programming Pixel Circuits and Point Scanning Data Driver Circuits", IDW Tech. Dig., pp. 283-286, 2004.
[63] Y. J. Park, J. Huh, B. K. Kim, M. H. Jung and O. Kim, "A New Voltage Driven Pixel Circuit for Large Sized AMOLED Panel", IDW Tech. Dig., pp. 539-540, 2004.
[64] H. R. Han, C. C. Kuo, W. T. Liao, S. T. Lo and W. C. Wang, "Active Organic Light Emitting Diode Drive Circuit", IDW Tech. Dig., pp. 523-526, 2004.
[65] D. Z. Peng, S. C. Chang and Y. M. Tsai, "Novel Pixel Compensation Circuit for AMOLED Display", SID Tech. Dig., pp. 814-817, 2005.
[66] J. C. Goh, C. K. Kim and J. Jang, "A Novel Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes", SID Tech. Dig., pp. 494-497, 2003.
[67] J. C. Goh, J. Jang, K. S. Cho and C. K. Kim, "A New a-Si:H Thin-Film Transistor Pixel Circuit for Active-Matrix Organic Light-Emitting Diodes", IEEE Electron Device Lett., Vol. 24, pp. 583-585, 2003.
[68] J. C. Goh, C. K. Kim and J. Jang, "A New Pixel Design for Amorphous-Silicon Backplane of Active-Matrix Organic Light-Emitting Diode Displays", SID Tech. Dig., pp. 276-279, 2004.
[69] W. B. Tam and T. Shimoda, "Modeling and Design of Polysilicon Drive Circuits for OLED Displays", SID Tech. Dig., pp. 1406-1409, 2004.
[70] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee and M. K. Han, "A New a-Si:H TFT Pixel Design Compensating Threshold Voltage Degradation of TFT and OLED", SID Tech. Dig., pp. 264-267, 2004.
[71] J. H. Kim, J. H. Lee, W. J. Nam, B. H. You and M. K. Han, "A New AMOLED Pixel Design Compensating Threshold Voltage Degradation of a-Si:H TFTs and OLED", IDW Tech. Dig., pp. 531-534, 2004.
[72] J. H. Jung, H. Kim, S. P. Lee, U. C. Sung, J. S. Rhee, C. S. Ko, J. C. Goh, B. R. Choi, J. H. Choi, N. D. Kim and K. Chung, "A 14.1 inch Full Color AMOLED Display with Top Emission Structure and a-Si TFT Backplane", SID Tech. Dig., pp. 1538-1541, 2005.
[73] S. H. Jung, W. J. Nam and M. K. Han, "A New Voltage Modulated AMOLED Pixel Design Compensating Threshold Voltage Variation of Poly-Si TFTs", SID Tech. Dig., pp. 622-625, 2002.
[74] S. H. Jung, W. J. Nam and M. K. Han, "A New Voltage-Modulated AMOLED Pixel Design Compensating for Threshold Voltage Variation in Poly-Si TFTs", IEEE Electron Device Lett., Vol. 25, pp. 690-692, 2004.
[75] S. Yujuan, Z. Yi, C. Xinfa and L. Shiyong, "A Simple and Effective ac Pixel Driving Circuit For Active Matrix OLED", IEEE Transactions on Electron Devices, Vol. 50, pp. 1137-1140, 2003.
[76] J. Sanford and F. Libsch, "TFT AMOLED Pixel Circuits and Driving Methods", SID Tech. Dig., pp. 10-13, 2003.
[77] B. H. You, W. J. Nam, J. H. Lee, C. W. Han and M. K. Han, "Polarity-Balanced Driving to Reduce VTH Shift in a-Si for Active-Matrix OLEDs", SID Tech. Dig., pp. 272-275, 2004.
[78] J. H. Lee, C. W. Han, B. H. You and M. K. Han, "The Suppression of the threshold voltage shift in a-Si TFT pixel for AMOLED by employing the reverse bias annealing", IDW Tech. Dig., pp. 541-542, 2004.
[79] Y. C. Lin and H. P. Shieh, "Improvement of Brightness Uniformity by AC Driving Scheme for AMOLED Display", IEEE Electron Device Lett., Vol. 25, pp. 728-730, 2004.
[80] G. R. Chaji, P. Servati and A. Nathan, "Driving scheme for stable operation of 2-TFT a-Si AMOLED pixel", IEE Electronics Letters, Vol. 41, pp. 499-500, 2005.
[81] J. H. Lee, B. H. You, C. W. Han, K. S. Shin and M. K. Han, "A New a-Si:H TFT Pixel Circuit Suppressing OLED Current Error Caused by the Hysteresis and Threshold Voltage Shift for Active Matrix Organic Light Emitting Diode", SID Tech. Dig., pp. 228-231, 2005.
[82] W. C. Wang et al., ASID Tech. Dig., pp. 259-262, 2000.
[83] J. H. Kim and J. Kanicki, "Amorphous Silicon Thin-Film Transistors-based Active-Matrix Organic Light-Emitting Displays", SID Tech. Dig., pp. 614-617, 2002.
[84] H. Akimoto, H. Kageyama, Y. Shimizu, H. Awakura, S. Nishitani and T. Sato, "An Innovative Pixel-Driving Scheme for 64-Level Gray-Scale Full-Color Active Matrix OLED Displays", SID Tech. Dig., pp. 972-975, 2002.
[85] H. Kageyama, H. Akimoto, T. Ouchi, N. Kasai, H. Awakura, N. Tokuda and T. Sato, "A 3.5-inch OLED Display using a 4-TFT Pixel Circuit with an Innovative Pixel Driving Scheme", SID Tech. Dig., pp. 96-99, 2003.
[86] H. Kageyama, H. Akimoto, Y. Shimizu, T. Ouchi, N. Kasai, H. Awakura, N. Tokuda, K. Kajiyama and T. Sato, "A 2.5-inch OLED Display with a Three-TFT Pixel Circuit for Clamped Inverter Driving", SID Tech. Dig., pp. 1394-1397, 2004.
[87] H. Akimoto, H. Kageyama, Y. Shimizu, H. Awakura, N. Kasai, N. Tokuda and T. Sato, "Two TFT Pixel Circuit with Non-Uniformity Suppress-Function for Voltage Programming Active Matrix OLED Displays", SID Tech. Dig., pp. 1550-1553, 2005.
[88] S. J. Ashtiani, P. Servati and A. Nathan, "Active-matrix organic light-emitting diode display driver based on second-generation current conveyor", IEE Electronics Letters, Vol. 40, pp. 1178-1179, 2004.
[89] S. Jafarabadiashtiani, G. Chaji, S. Sambandan, D. Striakhilev, A. Nathan and P. Servati, "A New Driving Method for a-Si AMOLED Displays Based on Voltage Feedback", SID Tech. Dig., pp. 316-319, 2005.
[90] D. Fish, N. Young, S. Deane, A. Steer, D. George, A. Giraldo, H. Lifka, O. Gielkens and W. Oepts, "Optical Feedback for AMOLED Display Compensation using LTPS and a-Si:H Technologies", SID Tech. Dig., pp. 1340-1343, 2005.
[91] J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp. 897–899, Dec. 2005.
[92] P. E. Burrow, S. R. Forrest, T. X. Zhou, and L. Michalski, “Operating lifetime of phosphorescent organic light emitting devices,” Appl. Phys. Lett., vol. 76, no. 18, pp.2493-2495, May 2000.
[93] S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” J. Display Technol., vol. 3, no. 1, pp. 36–39, Mar. 2007.
[94] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129–131, Feb. 2007.
[95] J. C. Goh, H. J. Chung, J. Jang, and C. H. Han, “A new pixel circuit for active matrix organic light emitting diodes,” IEEE Elect. Dev. Lett., vol 23, 2002, p. 544-546.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔