|
[1] T.-H. Lee, K.-S. Donnelly, J.T.C. Ho, J. Zerbe, M.G. Johnson, and T. Ishikawa, “A 2.5V CMOS delay locked loop for 18Mbit 500 megabyte/s DRAM,” IEEE J. Solid-State Circuits, vol. 29, pp. 1491-1496, Dec. 1994. [2] J.-B. Lee, K.-H. Kim, C. Yoo, S. Lee, O.-G. Na, C.-Y. Lee, H.-Y. Song, J.-S. Lee, Z.-H. Lee, K.-W. Yeom, H.-J. Chung, I.-W. Seo, M.-S. Chae, Y.-H. Choi, and S.-I. Cho, “Digitally-controlled DLL and I/O circuits for 500 Mb/s/pin 16 DDR SDRAM,” IEEE ISSCC, pp. 68–69, Feb. 2001. [3] K.-H. Kim, G.-H. Cho, J.-B. Lee, and S.-In Cho, “Built-in duty cycle corrector using coded phase blending scheme for DDR/DDR2 synchronous DRAM applications,” IEEE Symposium on VLSI Circuits, pp.287-288, Jun. 2003. [4] S.-J. Jang, Y.-H. Jun, J.-G. Lee, and B.-S. Kon, “ASMD with duty cycle correction scheme for high-speed DRAM,” Electronics Letters, vol. 37, no. 16, pp.1004-1006, Aug. 2001. [5] T. Mantano, Y. Takai, T. Takahashi, Y. Sakito, I. Fujii, Y.-T. Takahashi, H. Fujisawa, S. Miyatake, T. Sekiguchi, K. Koyama, and K. Miyazawa, “A 1-Gb/s/pin 512-Mb DDRII SDRAM using a digital DLL and a slew-rate-controlled output buffer,” IEEE J. Solid-State Circuits, vol. 35, no.2, pp. 762-768, May. 2003. [6] Y. Takai et al., “A 250-Mb/s/pin, 1-Gb Double-Data-Rate SDRAM with a bidirectional delay and an interbank shated redundancy scheme,” IEEE J. Solid-State Circuits, vol. 35, pp. 149-159, Feb. 2000. [7] T. Saeki, et al. “A 2.5-ns clock access, 250-MHz, 256-Mb SDRAM with synchronous mirror delay,” IEEE J. Solid-State Circuits, vol. 31, pp. 1656-1668, Nov. 1996. [8] P.-K. Hanumolu, B. Casper, R. Mooney, G.-Y. Wei, and U.-K. Moon, “A analysis of PLL clock jitter in high-speed serial links,” IEEE Transactions on Circuits and Systems II, vol. 50, pp.879-886, Nov. 2003. [9] H. Huh, Y. Koo, K.-Y. Lee, Y. Ok, S. Lee, D. Kwon, J. Lee, J. Park, K. Lee, D.-K. Jeong, W. Kim, “A CMOS dual-band fractional-n synthesizer with reference doubler and compensated charge pump”, IEEE ISSCC, pp. 100-516, Feb. 2004. [10] J. Kim, M.-A. Horowitz, and G.-Y. Wei, “Design of CMOS adaptive-bandwidth PLL/DLLs : A general approach,” IEEE Transactions on Circuits and Systems II, vol. 50, pp.860-869, Nov. 2003. [11] B.-G. Kim, K.-I. Oh, L.-S. Kim, and D.-W Lee, “A 500MHz DLL with second order duty cycle corrector for low Jitter,” IEEE CICC, pp.325-328, Sep. 2005. [12] L. Li, J.-H. Chen, and R.-C. Chang, “A low jitter delay-locked loop with a realignment duty cycle corrector,” IEEE SOCC, pp.73-76, Sept. 2005. [13] C. Jeong, C. Yoo, J.-J Lee, and J. Kih, “Digital delay locked loop with open-loop digital duty cycle corrector for 1.2Gb/s/pin double data rate SDRAM,” IEEE ISSCC, pp.379-382, Sep. 2004. [14] Y.-J. Jung, S.-W Lee, D. Shim, W. Kim, C. Kim, and S.-I. Cho, “A dual-loop delay-locked loop using multiple voltage-controlled delay lines,” IEEE J. Solid-State Circuits, vol. 36, pp.784-791, May 2001. [15] Y.-J. Jung, S.-W. Lee, D.-S. Shim, W.-C. Kim, C.-H. Kim, and S.-I. Cho, “A Low jitter dual loop DLL using multiple VCDLs with a duty cycle corrector,” IEEE SOVC, vol. 36, pp. 784-791, May 2001. [16] M.-B. Lin, “VLSI System Design Lecture Notes”, 2006. [17] F. Mu, S. C, “Pulsewidth control loop in high-speed CMOS clock buffers”, IEEE J. Solid-State Circuits, vol.35, pp.134 – 141, Feb. 2000. [18] P.-H. Yang, J.-S. Wang, “Low-voltage pulsewidth control loops for SOC applications”, IEEE J. Solid-State Circuits, vol.37, pp.1348 – 1351, Oct. 2002. [19] S.-R. Han, S.-I. Liu, “A 500-MHz-1.25-GHz fast-locking pulsewidth control loop with presettable duty cycle”, IEEE J. Solid-State Circuits, vol.39, pp.463 -468, Mar. 2004. [20] Y.-C. Jang, J.-H. Bae, H.-J. Park, “A Digital CMOS PWCL With Fixed-Delay Rising Edge and Digital Stability Control”, IEEE Transactions on Circuits and Systems II, vol.53, pp.1063 – 1067, Oct. 2006. [21] Y.-M. Wang and J.-S. Wang, “An all-digital 50% duty-cycle corrector,” IEEE ISCAS, vol. 2, pp. 925-928, May 2004. [22] B.-J. Chen, S.-K. Kao, S.-J. Liu, “An All-Digital Duty Cycle Corrector,” IEEE Symposium on VLSI-DAT, pp. 1-4, Apr. 2006. [23] C. Yoo, C. Jeong, J. Kih, “Open-loop full-digital duty cycle correction circuit,” Electronic Letters, vol. 41, pp. 635-636, May 2005. [24] B.-W. Garlepp, K.-S. Donnelly, K. Jun, P.-S. Chau, J.-L. Zerbe, C. Huang, C.-V. Tran, C.-L. Portmann, D. Stark, Y.-F. Chan, T.-H. Lee, M.-A. Horowitz, “A portable digital DLL for high-speed CMOS interface circuits,” IEEE J. Solid-State Circuits, Vol. 34, pp. 632 – 644, May 1999. [25] S.-K. Kao, S.-I. Liu, “A Wide-Range All-Digital Duty Cycle Corrector with a Period Monitor,” IEEE EDSSC, pp. 349-352, Dec. 2007. [26] J.-J. Nam and H.-J. Park, “An all-digital CMOS duty cycle corrector circuit with a duty-cycle correction range of 15-to85% for multi-phase applications,” IEICE Trans. Electron., vol. 88, pp. 773-777, Apr. 2005. [27] K. Agarwal, R. Montoye, “A Duty-Cycle Correction Circuit for High-Frequency Clocks,” IEEE Symposium on VLSI Circuist, pp. 106-107. [28] T. Ogawa and k. Taniguchi, “A 50% Duty Cycle Correction Circuit for PLL Output,” IEEE Int’l Symposium Circuits and Systems, pp. IV-21-IV24, May 2002. [29] J.-S. Humble, P.-J. Zabinski, B.-K. Gilbert, E.-S. Daniel, “A Clock Duty-Cycle Correction and Adjustment Circuit,” IEEE ISSCC, pp. 2132-2141, Feb. 2006. [30] P. Chen, S.-W. Chen, J.-S. Lai, “A low power wide tange duty cycle corrector based on pulse shrinking/stretching mechanism,” IEEE Asian Solid-State Circuits Conference, pp. 460-463, Nov. 2007. [31] B. Razavi, “Design of analog CMOS integratied circuits,” McGraw-Hill, 2001. [32] P. Allen and D. Holberg, “CMOS analog circuit design ,” New York OXFORD, 2002. [33] D. Johns and K. Martin, “Analog intergrated circuit design,” John Wiley & Sons, 1997.
|