(3.238.173.209) 您好!臺灣時間:2021/05/17 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宗霆
研究生(外文):Zong-Ting Lin
論文名稱:光接收積體電路與雙頻式時脈資料回復電路
論文名稱(外文):Design and Implementation of the Optical Receiver and the Dual-Band Clock and Data Recovery Integrated Circuits
指導教授:劉政光劉政光引用關係
指導教授(外文):Cheng-Kuang Liu
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:91
中文關鍵詞:光接收時脈資料回復電路
外文關鍵詞:optical receiverclock and data recovery
相關次數:
  • 被引用被引用:2
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文呈現數種應用於光通訊系統中的積體電路,包含發光元件、光接收元件、轉阻放大器、壓控振盪器與雙頻式時脈資料回覆電路。
首先,文中提出一種可同時當作發光元件與光接收元件的金氧半元件。此元件可等效為一個二極體,在400mA順偏時,所發出的1100nm光為57nW,在1.8V逆偏時,在4mW的綠光及紅光照射下,產生的光電流分別約為1.8μA 與800nA,其中照射的綠光與紅光波長分別為530nm與630nm。此發光元件、光接收元件與轉阻放大器是使用台積電0.35μm SiGe BiCMOS製程實現在同一個晶片裡。此轉阻放大器的轉阻增益為65dBΩ,-3dB頻寬為2.5GHz,最大資料傳輸速率為2.5Gbps。
此外,文中呈現以台積電0.18μm CMOS製程實現一個2.4GHz低功率低電壓的壓控振盪器,此振盪器的可調範圍為22%,在偏移載波1MHz處的相位雜訊為-119dBc/Hz,在1.2V電壓供應下的功率消耗為3.48mW,FOM值為-180.7dBc/Hz。最後,文中提出一個應用於光接收端的雙頻式時脈資料回復電路,此電路是以台積電0.18μm CMOS製程實現,其資料傳輸速率為1.25Gbps與625Mbps兩種模式。
This thesis presents integrated circuits for optical communication systems, including the light emitting device, light receiving device, transimpedance amplifier (TIA) with the regulated cascade (RGC) input stage, voltage controlled oscillator (VCO), and dual-band clock and data recovery (CDR) circuit.
First, we show a MOS structure for both light emitting device and light receiving device. The device is equivalent to a p-n diode. At the 400-mA forward-bias current, the 1100-nm emitting light power is 57nW. At the 1.8-V reverse-bias voltage, the photocurrents generated by the incident light power of 4mW are about 1.8μA and 800nA, for the 530nm green light and the 630nm red light, respectively. We implement the light emitting device, light receiving device, and RGC TIA in a chip, using the TSMC 0.35μm SiGe BiCMOS process. The RGC TIA achieves a transimpedance gain of 65dBΩ and -3dB bandwidth of 2.5GHz. The maximum data rate of the RGC TIA is 2.5Gbps.
Besides, we implement a 2.4GHz low power and low voltage VCO in the TSMC 0.18μm CMOS process. The VCO achieves a tuning range of 22% and phase noise of -119dBc/Hz at a 1MHz offset. The power consumption of the VCO core is 3.48mW under 1.2V supply voltage. The FOM of the VCO is -180.7dBc/Hz. Finally, we propose a 1.25Gbps/625Mbps dual-band CDR circuit for application to the optical receiver in the TSMC 0.18μm CMOS process.
論文摘要 I
Abstract III
誌謝 V
Contents VI
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Optical-Fiber Communication System 1
1.3 Overview of this Thesis 3
Chapter 2 Light Emitting and Receiving Device 5
2.1 Introduction 5
2.2 Light Emission Mechanisms 6
2.3 Light Detection Mechanisms 8
2.4 Implementation of the Device 10
2.5 Measurement Results 15
2.5.1 I-V Characteristic 15
2.5.2 Light Emission Characteristic 16
2.2.3 Light Detection Characteristic 21
2.6 Discussion and Conclusions 24
Chapter 3 Transimpedance Amplifier 25
3.1 Introduction 25
3.2 NRZ Data and RZ Data 26
3.3 Data Eye Diagram 26
3.4 General Considerations 28
3.5 Open-Loop TIA 30
3.6 Feedback TIA 32
3.7 Implementation of the TIA circuit 33
3.7.1 Regulated Cascode Input Stage 33
3.7.2 Circuit Design 35
3.7.3 Circuit Simulation 36
3.8 Measurement Results of the TIA circuit 39
3.9 Discussion and Conclusions 45
Chapter 4 A 2.4GHz Low Power and Low Voltage VCO 46
4.1 Introduction 46
4.2 Oscillator Theory 48
4.3 Ring Oscillator 50
4.4 LC Oscillator 52
4.5 Implementation of the VCO circuit 53
4.5.1 Cross-Couple Pair 53
4.5.2 Circuit Design 54
4.5.3 Circuit Simulation 56
4.6 Measurement Results of the VCO Circuit 59
4.7 Discussion and Conclusions 65
Chapter 5 A 1.25Gbps/625Mbps Dual-Band CDR Circuit 66
5.1 Introduction 66
5.2 General Considerations 66
5.3 Components of the common CDR 67
5.4 Loop Analysis 69
5.5 Implementation of the CDR circuit 72
5.5.1 Circuits Description 72
5.5.2 Phase Detector 74
5.5.3 Charge Pump 76
5.5.4 Voltage Controlled Oscillator 77
5.5.5 Divider 77
5.5.6 System Design and Simulation 78
5.6 Discussion and Conclusions 84
Chapter 6 Conclusions 85
6.1 Conclusions 85
6.2 Future Work 86
References 87
Author 91
[1] H. C. Lee, “The study of light emission in Si and its application to optical interconnect using CMOS process,” Ph.D. dissertation, Electronic Engineering Department, National Taiwan University of Science and Technology, 2005
[2] M. K. Liu, Principles and Applications of Optical Communications, IRWIN, 1996
[3] D. A. Neamen, Semiconductor Physics and Devices, McGraw-Hill, 1998
[4] S. M. Sze, Physics of Semiconductor Devices, Wiley and Sons, 2007
[5] A. Chatterjee and B. Bhuva, “High speed, high reliability Si-based light emitters for optical interconnects,” IEEE Interconnect Technology Conference, pp. 86-88, 2002
[6] A. Chatterjee, P. Mongkolkachit, B. Bhuva, and A. Verma, “All Si-based optical interconnect for interchip signal transmission,” IEEE Photonics Technology Letters, vol. 15, no. 11, pp. 1663-1665, 2003
[7] M. K. Das, and N. R. Das, “Effect of Ge-composition on the frequency response of a Si/Si1-yGey P-i-N photodetector,” Optical Engineering, 2006
[8] H. Aharoni, and M. du Plessis, “Low-operating-voltage integrated silicon light-emitting devices,” IEEE J. Quantum Electronics, vol. 40, no. 5, pp. 557-563, 2004
[9] J. Choi, B. J. Sheu, and O. T. Chen, “A monolithic GaAs receiver for optical interconnect systems,” IEEE J. Solid-State Circuits, vol. 29, no. 3, pp. 328-331, 1994
[10] H. Chen, M. Gu, J. Huang, P. Gao, and L. Mao, “A standard CMOS compatible monolithic photo-detector and trans-impedance amplifier,” IEEE Conference on Electron Devices and Solid-State Circuits, pp. 721-724, 2005
[11] B. Razavi, Design of Integrated Circuits for Optical Communications, McGraw-Hill, 2003
[12] W. Z. Chen, C. H. Lu, “A 2.5Gbps CMOS optical receiver analog front-end,” IEEE Custom Integrated Circuits Conference, pp. 359-362, 2002
[13] S. S. Mohan, M. M. Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 346-355, 2000
[14] A. Tanabe, M Soda, Y. Nakahara, T. Tamura, K. Yoshida, and A. Furukawa, “A single-chip 2.4-Gb/s CMOS optical receiver IC with low substrate cross-talk preamplifier,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2148-2153, 2000
[15] Y. H. Oh, and S. G. Lee, “An inductance enhancement technique and its application to a shunt-peaked 2.5Gb/s transimpedance amplifier design,” IEEE Transactions on Circuits and Systems, vol. 51, no. 11, pp. 624-628, 2004
[16] S. M. Park, and H. J. Yoo“1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet applications,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 112-121, 2004
[17] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill 2001
[18] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 716-724, 1999
[19] A. Hajimiri and T. Lee, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, 2000
[20] T. Y. Lin, Y. Z. Juang, H. Y. Wang, and C. F. Chiu, “A low power 2.2-2.6GHz CMOS VCO with a symmetrical spiral inductor,” IEEE International Symposium on Circuits and Systems, vol. 1, pp. 641-644, 2003
[21] H. Kim, S. Ryu, Y. Chung, Ji. Choi, and B. Kim, “A low phase-noise CMOS VCO with harmonic tuned LC tank,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 7, pp. 2917-2924, 2006
[22] L. Jia, J. G. Ma, K. S. Yeo, and M. A. Do, “A novel methodology for the design of LC tank VCO with low phase noise,” IEEE International Symposium on Circuits and Systems, vol. 1, pp. 376-379, 2005
[23] H. C. Chen, T. Wang, and S. S. Lu, “A low-phase-noise area-efficient 3-D LC VCO in standard 0.18-μm CMOS technology,” IEEE Electrotechnical Conference, pp. 202-205, 2006
[24] Y. H. Chuang, S. L. Jang, S. H. Lee, R. H. Yen, and J. J. Jhao, “5-GHz low power current-reused balanced CMOS differential Armstrong,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 2, 2007
[25] B. Razavi, “Challenges in the design high-speed clock and data recovery circuits,” IEEE Communications Magazine, vol. 40, no. 8, pp. 94-101, 2002
[26] C. Hogge, “A self correcting clock recovery circuit,” IEEE Transaction on Electron Device, vol. LT-3, no. 6, pp. 1312-1314, 1985
[27] M. Alioto, R. Mita, and G. Palumbo, “Design of high-speed power-efficient MOS current-mode logic frequency dividers,” IEEE Transactions on Circuits and Systems, vol. 53, no. 11, 2006
[28] D. Leenaerts, C. Dijkmans, and M. Thompson, “A 0.18 μm CMOS 2.45 GHz, low-power quadrature VCO with 15% tuning range,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 67-70, 2002
[29] H. Djahanshahi, and C. André T. Salama, “Differential CMOS Circuits for 622-MHz 933-MHz clock and data recovery applications,” IEEE J. Solid-State Circuits, vol. 35, no. 6, 2000
[30] R. J. Yang, K. H. Chao, S. C. Hwu, C. K. Liang, and S. I. Liu, “A 155.52Mbps-3.125Gbps continuous-rate clock and data recovery circuit,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1380-1390, 2006
[31] H. T. Ng, F. R. Ramin, M. J. E. Lee, W. J. Dally, T. Greer, J. Poulton, J. H. Edmondson, R. Rathi, and R. Senthinathan, “A second-order semidigital clock recovery circuit based on injection locking, ” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2101-2110, 2003.
[32] R. J. Yang and S. I. Liu “A 1.7-3.125Gbps clock and data recovery circuit using a gated frequency detector” IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, pp. 326-329, 2004
[33] M. H. Perrott, Y. Huang, R. T. Baird, B. W. Garlepp, L. Zhang, and J. P. Hein, “A 2.5-Gb/s multi-rate 0.25-μm CMOS CDR utilizing a hybrid analog/digital loop filter and all-digital referenceless frequency acquisition, ” J. Solid-State Circuits, vol. 41, no. 12, 2006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top