跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 10:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:韓建勳
研究生(外文):Han-chien Hsun
論文名稱:應用於DSRC系統1伏0.18umCMOS5.8GHz射頻接收機前端電路晶片設計
論文名稱(外文):1V 0.18um CMOS 5.8GHz RF Front-End Receiver Chip Design for DSRC Application
指導教授:黃進芳黃進芳引用關係劉榮宜
指導教授(外文):Jhin-Fang HuangRon-Yi Liu
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:95
中文關鍵詞:前端接收機DSRC
外文關鍵詞:Front-End ReceiverDSRC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文描述如何設計一個應用於DSRC (Dedicated Short Range Communication)系統的射頻接收機前端電路。本電路採用direct conversion的架構,其中包含了一個單端輸入,cascode架構的低雜訊放大器(LNA;Low Noise Amplifier),一個單端射頻(RF)輸入、雙端中頻(IF)輸出、Gilbert Cell的主動式雙平衡混波器(Mixer),以及一個雙端輸出、LC-tank交互偶合的壓控振盪器(VCO;Voltage Controlled Oscillator)。利用TSMC 0.18um 1P6M RF CMOS的製程,設計出工作在1伏特,應用於DSRC系統的5.8GHz 射頻接收機前端電路晶片。
整個射頻接收機能夠提供24.97dB的conversion gain、3.43dB的雜訊指數(noise figure)、-14.1dBm的P-1dB,以及-6.36dBm的IIP3,工作電壓為1伏特,整體功率消耗為17.6mW,晶片面積為0.781*1.244 mm2。
This thesis describe a 1 voltage 0.18um CMOS 5.8GHz RF front-end for DSRC (Dedicated Short Range Communication) application. This circuit integrated a single-ended low noise amplifier (LNA), a single-ended RF input, differential IF output, Gilbert Cell types mixer, and a LC-tank voltage controlled oscillator (VCO). The receiver has been using the standard TSMC 0.18um 1P6M RF CMOS process, design a 5.8GHz RF front-end receiver chip for DSRC application. The integrated RF receiver chip has 24.9dB conversion gain, noise figure is 3.43dB. The 1dB compression point is -14.1dBm. The third-order intercept point (IIP3) is -6.36dBm. The total power consumption is 17.6mW from 1V power supply. The integrated RF front end receiver chip area is 0.817*1.244 mm2.
Abstract (in Chinese) I
Abstract (in English) II
Acknowledgement (in Chinese) III
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 11
1.1 Motivation 11
1.2 DSRC Concept 12
1.3 Thesis Organization 13
Chapter 2 Receiver Architecture 14
2.1 Introduction 14
2.2 Receiver Architecture 14
2.2.1 Heterodyne Receiver 15
2.2.2 Homodyne Receiver(Zero-IF Receiver) 16
2.3 Receiver Specification 17
2.3.1 Noise Figure 17
2.3.2 Linearity 21
2.3.3 Stability 24
2.3.4 Conversion Gain 24
2.3.5 Leakage 25
2.3.6 Tuning Range 26
Chapter 3 Low Noise Amplifier Implementation 27
3.1 Introduction 27
3.2 Single-End Low Noise Amplifier Design 27
3.2.1 Impedance Matching 29
3.2.2 Capacitor coupling in CS LNA 29
3.2.3 Capacitor for input matching 31
3.2.4 Schematic of proposed LNA 33
3.3 Simulation Results 35
Chapter 4 Voltage Controlled Oscillator Implementation 41
4.1 Introduction 41
4.2 Oscillator Basic 42
4.3 Design of LC Tank VCO 44
4.3.1 Negative-Gm generation with a cross-couple pair 44
4.3.2 Varactor Circuit Architecture 45
4.3.3 Switched Capacitor Array 46
4.3.4 Output Buffer 47
4.3.5 Schematic of Proposed VCO 48
4.4 Simulation Results 51
4.5 Measurement Results 53
4.5.1 Measurement Method and Instrument of the VCO circuit 55
4.5.2 Tuning Range of the VCO circuit 55
4.5.3 Phase Noise and Spectrum of the VCO 58
4.5.4 Microphotograph of the fabricated VCO 59
4.6 Conclusion 62
Chapter 5 Mixer and Front-end Implementation 64
5.1 Introduction 64
5.2 Mixer Concept 64
5.2.1 Mixer Block Diagram 66
5.2.2 The type of Mixer 66
5.3 Signal Balance Mixer and Double Balance Mixer 67
5.3.1 Signal Balance Mixer 67
5.3.2 Double Balance Mixer 68
5.4 Design of Mixer 69
5.5 Simulation Results 71
5.6 Mixer Conclusion 76
5.7 Front End Implementation 77
5.7.1 Design of Front End 77
5.7.2 Simulation Results 78
5.7.3 Measurement Method 85
Chapter 6 Conclusion and Future work 90
6.1 Conclusion 90
6.2 Future work 91
Reference 92
[1]H.T. Friss, “Noise figures of radio receivers,” Proc. IRE, pp419-422, Jult 1944.
[2]H. Nyquist, “Thermal agitation of electric charge in conductors,” Physics Review 32 pp. 110-113, 1928.
[3]S. Asgaran, M. J. Deen, and C. H. Chen, “A 4-mW monolithic CMOS LNA at 5.7 GHz with the gate resistance used for input matching,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 4, Apr. 2006.
[4]K. H. Liang, H. Y. Chang and Y. J. Chan, “A 0.5-7.5 GHz ultra low-voltage low-power mixer using bulk-injection method by 0.18um CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 7 pp. 531-533, Jul. 2007.
[5]N. Fong, J. Plouchart, N. Zamdmer, D. Liu, L. Wagner, C. Plett, and N. Tarr, “Design of wide-band CMOS VCO for multiband wireless LAN applications,” IEEE, J. Solid-State Circuits, vol. 38, no. 8, pp.1333–1342, Aug. 2003.
[6]B. Gillbert, “A precise four quadrant multiplier with subnosecond response,” IEEE J. Solid-State Circuits, pp. 365-373, Dec. 1968.
[7]W. Z. Chen, T. L. Lee, and T. Y. Lu, “A 5-GHz direct-conversion receiver with I/Q phase and gain error calibration,” IEEE Radio Frequency Integrated Circuits Symposium, vol. 5, no. 5, pp. 201-204, Feb. 2005.
[8]A. Liscidini , A. Mazzanti , R. Tonietto , L. Vandi, P. Andreani, R. Castello, “A 5.4mW GPS CMOS quadrature front-end based on a single-stage LNA-Mixer-VCO,” IEEE J. Solid-State Circuits Conf., Feb. 2006, pp. 472–473.
[9]H. C. Chen, T.Wang, and S. S. Lu, “A5–6 GHz 1-V CMOS direct-conversion receiver with an integrated quadrature coupler,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1963–1975, Sep. 2007.
[10]A. Safarian1, A. Shameli1, A. Rofougaran, M. Rofougaran, and F. D. Flaviis1, “Integrated blocker filtering RF front ends,” IEEE Radio Frequency Integrated Circuits Symposium, Sep.2007.
[11]T. Song, H. S. Oh, E. Y. Yoon, and S. C. Hong, "A low power 2.4 GHz current-reused receiver front-end and frequency source for wireless Sensor Network," IEEE JSSC, vol. 42, pp. 1012-1022, May 2007.
[12]H. S. Kim and M. N. El-Gamal, “A 1V Fully Integrated CMOS Frequency Synthesizer for 5GHz WLAN,” IEEE International Symposium Circuits and Systems ISCAS 2005, vol. 5, pp4389–4392, May 2005.
[13]W. R. Liou, T. H. Chen, Y. C. Lin, and J. J. Ho, “A low-power 2/5.8-GHz CMOS LC-VCO for multi-band wireless communication applications,” 2006 International Conference on Communications, Circuits and Systems, ICCCAS, Proceedings 2, pp. 825-828, Jan. 2006.
[14]Y. H. Peng and L. H. Lu, “A Ku-band frequency synthesizer in 0.18-μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol.17 no.4, pp. 256-258, Apr. 2007.
[15]K. Shibata, H. Sato, and N. Ishihara, “A dynamic GHz-Band switching technique for RF CMOS VCO,” 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, SiRF07, pp. 273-276, Sep. 2007.
[16]J. A. Hou, C. P. Chang, J. Su, T. S. Liou, S. C. Wong, and Y. H. Wang, “A low supply voltage VCO implemented by a single common-source 90 nm CMOS transistor,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 1, pp. 65-66, Jan. 2007.
[17]F. Mahmoudi and C. AT. Salama, “8 GHz, 1V, high linearity, low power CMOS active mixer.” IEEE Radio Frequency Integrated Circuit Symposium, RFIC, pp. 401–404, 2004.
[18]T. T. Hsu and C. N. Kuo, “Low voltage 2mW 6-10.6GHz ultra wideband CMOS mixer with active balun,” IEEE Trans. Circuits Syst, pp. 5704-5707, Feb. 2006.
[19]S. K. Alam and J. D. Groat, “A 2 GHz high IIP3 down-conversion mixer in 0.18-um CMOS,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 194-197, Jan. 2006.
[20]S. K. Alam, “A 2 GHz low power down-conversion quadrature mixer in 0.18-μm CMOS,” International Conference on VLSI Design, pp.146 – 154, Jan. 2007.
[21]Y. Furuta, T. Heima, H. Sato and T. Shimizu, “A low flicker-noise direct conversion mixer in 0.13 um CMOS with dual-mode dc offset cancellation circuits,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, SiRF07, pp. 265-268, Feb . 2007.
[22]C. Hermann, C. Münker, and H. Klar, “A transformer based 1.8 – 1.9GHz low-IF receiver for 1V in 0.13um CMOS,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 297-300, Feb. 2006.
[23]Y. H. Chen, H. H. Hsieh, and L. H. Lu, “A 24-GHz receiver front end with an LO signal generator in 0.18um CMOS,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 5, pp. 1043-1051, Feb. 2008.
[24]W. Zhuo, X. Li, S. Shekhar, S. H. K. Embabi, J. Pineda de Gyvez, D. J. Allstot, and E. Sánchez-Sinencio, “A capacitor cross-coupled common-gate low noise amplifier,” IEEE Trans. Circuits Syst. II: Expr. Briefs, vol. 52, no. 12, pp. 875–879, Dec. 2005.
[25]H. H. Hsieh and L. H. Lu, “A high-performance CMOS voltage-controlled oscillator for ultra-low- voltage operations,” IEEE Tran. Microwave Theory and Tech, Vol. 55, No. 3, pp. 467–473, March 2007.
[26]R. M. Weng, C. Y. Liu, and Y. F. Kuo, “A novel low supply voltage VCO for IEEE 802.11a WLAN,” IEEE International Conference Consumer Electronics, pp.361–362, Jan. 2006.
[27]M. L. Hsia and O. T-C. Chen, “A multi-band CMOS LC quadrature VCO for GSM DCS DECT WCDMA bluetooth systems,” International Symposium Wireless Pervasive Computing, pp.1–4, Jan. 2006.
[28]J. P. Hong, S. J. Yun, N. J. Oh, and S. G. Lee, “A 2.2-mW backgate coupled LC quadrature VCO with current reused structure,” IEEE Microwave And Wireless Components Letters, vol. 17, no. 4, pp. 298–300, Apr. 2007.
[29]D. J. Allstot, K. Choi and J. Park, Parasitic-Aware Optimization of CMOS RF Circuits, New York, 2003.
[30]C. C. Feng, Dedicated Short Range Communication, ITRI, 2003.
[31]B. Razavi, RF Microelectroincs, Prentice Hall PTR, 1998.
[32]B. Leung, VLSI for Wireless Communication, Upper Saddle River, NJ: Prentice-Hall, 2002.
[33]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top