(3.238.130.97) 您好!臺灣時間:2021/05/18 11:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林澤佑
研究生(外文):Ze-you Lin
論文名稱:兩段式極化補償半導體光放大器
論文名稱(外文):Design of Two-Section Polarization Compensated Semiconductor Optical Amplifier
指導教授:李三良李三良引用關係
指導教授(外文):San-liang Lee
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:72
中文關鍵詞:半導體光放大器極化兩段式
外文關鍵詞:SOAsemiconductor optical amplifierpolarizationtwo section
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目的在於提供一個新的方法達到半導體光放大器對極化不敏感,以往就材料上而言,多是利用舒張形變量子井提高TM模態的增益達到補償,本文將反其道而行利用壓縮形變量子井以及量子井混和的方式達到兩段式補償極化不敏感的效果。
在分析上主要利用半導體光放大器增益的原理以及量子井混和效應去尋找一個現實中可行,同時兼顧效能的兩段式半導體光放大器,在極化增益差值為±0.5dB的條件下,總長度為250μm時,單趟增益可達8.85dB,若將長度增加為1000μm,其增益可達35.4dB,且可以經由兩段施與不同的電流以控制極化不敏感波長的位置。
The purpose of the thesis is to provide a novel method to achieve polarization insensitive semiconductor optical amplifier (SOA). In the previous work, tensile strain is added to the gain material to enhance the TM-mode gain. In this work, we design a two-section semiconductor optical amplifier to achieve polarization compensation. Etch section has compressive quantum wells with different composition by using the quantum well intermixing technique.
By taking the gain coefficient and quantum well intermixing effect into account, we can optimize the proposed SOA structure to obtain almost the same round-trip gain for both TE and TM modes by blue-shifting the material bandgap in one of the two sections.
From the simulation results, a round-trip gain of 8.85dB and 35.4dB can be achieved in the optimized SOA structure with a total cavity length of 250μm and 1000μm, respectively. Polarization insensitive wavelength can be further tuned b changing the carrier density of the two sections.
摘要-----------------------------------------------------Ⅰ
Abstract-------------------------------------------------Ⅱ
目錄-----------------------------------------------------Ⅲ
圖表索引-------------------------------------------------Ⅵ
第一章 簡介-----------------------------------------------1
1-1 前言--------------------------------------------------1
1-2 半導體光放大器----------------------------------------2
1-3 半導體光放大器在全光網路中的應用----------------------4
1-3-1 波長轉換器與WDM-------------------------------------4
1.3.2 SOA與全光波長轉換-----------------------------------8
1.4 半導體光放大器的重要特性-----------------------------12
1.5 降低極化相依性的方式---------------------------------14
1.5.1 系統架構上的改良-----------------------------------14
1.5.2 結構上的改良---------------------------------------16
第二章 理論分析------------------------------------------19
2.1 磷砷化銦鎵(InGaAsP)的用途及其特性--------------------19
2.2 半導體光放大器的增益---------------------------------24
2.2.1 法布里-裴洛半導體光放大器--------------------------24
2.2.2 行波式半導體光放大器-------------------------------26
2.3 侷限因子---------------------------------------------31
2.4 雜訊-------------------------------------------------34
2.5 量子井混合效應---------------------------------------36
第三章 兩段式極化不敏感半導體光放大器設計----------------38
3-1 PIC3D簡介--------------------------------------------38
3-2 構想-------------------------------------------------39
3-3 基本架構---------------------------------------------42
3-4 主動區域的發光波段-----------------------------------43
3-4-1 壓縮形變量子井材料增益與波長關係分析---------------43
3-4-2井寬度設計------------------------------------------44
3-4-3 初始材料形變量與能階的關係-------------------------44
3-4-4 離子佈植與熱退火-----------------------------------45
3-4-5 材料增益的平坦度-----------------------------------45
3-4-6 侷限因子-------------------------------------------46
3-4-7 長度選擇-------------------------------------------46
第四章 模擬結果與分析------------------------------------47
4-1 InGaAsP材料組成對能階與形變量的影響------------------47
4-2 量子井寬度分析---------------------------------------48
4-3 適合初始條件材料的形變量與能階分析-------------------49
4-4 量子井混合之後的結果---------------------------------51
4-5 材料平坦度的分析-------------------------------------54
4-6 長度選擇---------------------------------------------60
4-7 元件調變分析-----------------------------------------67
第五章 結論----------------------------------------------69
5-1 成果-------------------------------------------------69
5-2 未來研究方向-----------------------------------------70
參考文獻-------------------------------------------------71
[1] 杜國同, 半導體激光器件物理, 吉林大學出版社, 2002, Ch9.
[2] A. Borghesani, “Semiconductor Optical Amplifiers for Advance Optical
Applications,” ICTON 2006, paper Tu.C1.3, pp.119-122, June 2006
[3] M. Itoh, Y. Shibata, T. Kakitsuka, Y. Kadota, H. Sugiura, and Y. Tohmori,
“Amplifying Characteristics of 1.55-μm Polarization-Insensitive SOAs With
MQW and Strained-Bulk Active Layers for Device Application,” Journal of
Lightwave Technology, vol. 24, no. 3, pp.1478-1485, March 2006
[4] P. Doussiere, P. Garabedian, C. Graber, D. Bonnevie, T. Fillion, E.
Derouin, M. Monnot, J. G. Provost, D. Leclerc, and M. Klenk, “1.55 μm
Polarization Independent Semiconductor Optical Amplifier with 25 dB Fiber
to Fiber Gain,” IEEE Photonics Technology Letters, vol. 6, no. 2, pp.
170–172, February 1994.
[5] M. Itoh, Y. Shibata, T. Kakitsuka, Y. Kadota, and Y. Tohmori,
“Polarization-Insensitive SOA With a Strained Bulk Active Layer for
Network Device Application,” IEEE Photonics Technology Letters, vol. 14,
no. 6, pp. 765-767, June 2002
[6] T. Ito, N. Yoshimoto, K. Magari and H. Sugiura, “Wide-Band Polarization-
Independent Tensile-Strained InGaAs MQW-SOA Gate,” IEEE Photonics
Technology Letters, vol. 10, no. 5, pp. 657-659, May 1998
[7] C.C. Davis, “Fiber Optic Technology and Its Role in The Information
Revolution,” HONR 169Z, http://www.ece.umd.edu/~davis/optfib.html
[8] J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and
Experiment of In1-xGax Asy P1-y and In1-x-y Gax Aly As Long-Wavelength
Strained Quantum-Well Lasers,” IEEE Journal of Quantum Electronics, vol.
35, no. 5, pp.771-782, May 1999
[9] S.R. Joseph, J. Hawkins, C.E. Zah, M. Serafin and T.P. Lee, “The Tilted
Waveguide Semiconductor Laser Amplifier,” Journal of Applied Physics,
pp.2240-2242, August 1988
[10] H. Yamamoto, M. Asada, and Y. Suematsu, “Theory of Refractive Index
Variation in Quantum Well Structure and Related Intersectional Optical
Switch,” Journal of Lightwave Technology, vol. 6, no. 12, December 1988
[11] L.A. Coldren, S.W. Corzine, Diode Lasers and Photonic Integrated
Circuits, New York Willey, pp.428-433
[12] 郭盛輝, 應用於高速光開關之半導體光放大器, 碩士論文, 台灣科技大學, 民國九十
三年
[13] W.C.H. Choy and K.S. Chan, “Theoretical Analysis of Diffused Quantum-
Well Lasers and Optical Amplifiers,” IEEE Journal of Selected Topics in
Quantum Electronics, vol. 9, no. 3, May/June 2003
[14] E.H. Li, B.L. Weiss, and K.S. Chan, “Eigenstates and Absorption Spectra
of Interdiffused AlGaAs-GaAs Multiple-Quantum-Well Structures,” IEEE
Journal of Quantum Electronics, vol. 32, no. 8, August 1996
[15] 潘彥廷, 設計製作半導體雷射的量子井混合技術, 碩士論文, 台灣科技大學, 民國九
十二年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top