(3.239.56.184) 您好!臺灣時間:2021/05/13 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝依峻
研究生(外文):Yi-Chun Hsieh
論文名稱:組織背景抑制於諧波對比劑偵測
論文名稱(外文):Tissue Background Suppression for Harmonic Contrast Detection
指導教授:沈哲州
指導教授(外文):Che-Chou Shen
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:80
中文關鍵詞:CTR諧波溢漏軸向解析度對比劑諧波影像組織諧波
外文關鍵詞:Tissue harmonicContrast-to-tissue ratioAxial resolutionContrast agentHarmonic imagingHarmonic leakageOptimal transmit phasing
相關次數:
  • 被引用被引用:9
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超音波諧波影像可用以提升微氣泡對比劑的偵測能力,但諧波影像一般為了提升影像的軸向解析度,常會使用較短的發射脈衝而出現諧波溢漏信號(harmonic leakage),此外組織諧波信號的產生也會使得影像的CTR值(contrast-to-tissue ratio)下降。本文主要探討當對比劑諧波影像中有諧波溢漏信號存在時,如何利用組織諧波與溢漏諧波之間的相位關係來將背景組織區域的諧波信號抑制,以提升影像的CTR值。我們提出利用改變基頻發射信號的相位來調整組織諧波與溢漏諧波之間的相位差,當兩者反相時便可降低背景組織區域的諧波信號強度,在實驗與模擬驗證中可發現本技術確實可以抑制背景組織的諧波信號,而對比劑諧波信號則較不受基頻發射相位影響,因此整個諧波影像的CTR值可被提升達5dB左右。
Ultrasonic harmonic imaging provides superior image quality than linear imaging and has become an important diagnostic tool in many clinical applications. Nevertheless, the contrast-to-tissue ratio (CTR) in harmonic imaging is generally limited by tissue background signal comprising both the leakage harmonic signal and the tissue harmonic signal. Harmonic leakage generally occurs when a wideband transmit pulse is utilized for better axial resolution. In addition, generation of tissue harmonic signal during acoustic propagation also decreases the CTR. In this paper, suppression of tissue background signal in harmonic imaging is studied by selecting an optimal phase of the transmit signal to achieve destructive cancellation between the tissue harmonic signal and the leakage harmonic signal. With the optimal suppression phase, our results indicate that the tissue signal can be significantly reduced at second harmonic band while the harmonic amplitude from contrast agents shows negligible change with the selection of transmit phase. Consequently, about 5-dB CTR improvement can be achieved from effective reduction of tissue background amplitude in optimal transmit phasing.
摘要
Abstract
致謝
目錄
圖目錄
表目錄
第一章 緒論
1-1 醫用超音波影像的基本原理與特性
1-2 超音波對比劑簡介
1-3 超音波對比劑之諧波影像
1-4 組織諧波與溢漏諧波
1-5 諧波抑制的相關文獻
1-6 研究動機與目標
1-7 論文架構
第二章 改變發射波形的基頻相位法原理
2-1 發射連續波(Continuous Wave)情形
2-2 發射脈衝波(Pulse Wave)情形
第三章 研究方法
3-1 模擬方法
3-1-1 組織諧波信號的模擬
3-1-2 對比劑諧波信號的模擬
3-2 實驗方法與系統架構
3-2-1 諧波信號的量測
3-2-2 仿體影像的組成
第四章 模擬與實驗結果
4-1 模擬結果
4-1-1 組織諧波信號
4-1-2 對比劑諧波信號
4-2 實驗結果
4-2-1 組織諧波信號
4-2-2 對比劑諧波信號
4-2-3 仿體影像
第五章 討論、結論與未來工作
5-1 討論
5-2 結論
5-3 未來工作
參考文獻
[1]沈哲州,「超音波組織非線性影像分析」,國立台灣大學碩士論文,民國八十九年。
[2]王裕鈞,「使用三倍頻發射相位法於組織諧波信號分析」,國立台灣科技大學碩士論文,民國九十六年。
[3]李嘉明、李玉華,「新超音波醫學-(1)醫用超音波的基礎」,合記圖書出版社,民國95年。
[4]R. Bekeredjian, P. A. Grayburn, R. V. Shohet, “Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine,” J. AmColl Cardiol., vol. 45, no. 3, pp. 329-335, 2005.
[5]P. J. A. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate and N. De Jong, “Ultrasound contrast imaging: current and new potential methods,” Ultrasound Med. Biol., vol. 26, no. 6, pp. 965-975, 2000.
[6]B. B. Goldberg, “Ultrasound contrast agents,” London: M. Dunitz, 2001.
[7]B. B. Goldberg, J. B. Liu and F. Forsberg, “Ultrasound contrast agents: A review,” Ultrasound Med. Biol., vol. 20, no. 4, pp. 319-333, 1994.
[8]M. Emmer, A. van Wamel, D. E. Goertz and N. de Jong, “The Onset of microbubble vibration,” Ultrasound Med. Biol., vol. 33, pp. 941-949, 2007.
[9]P. H. Chang, K. K. Shung, S. J. Wu and H. B. Levene, “Second harmonic imaging and harmonic Doppler measurements with Albunex��,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, pp. 1020-1027, 1995.
[10]N. de Jong, A. Bouakaz and P. Frinking, “Harmonic imaging for ultrasound contrast agents,” in Proc. IEEE Ultrason. Symp., vol. 2, pp. 1869-1876, 2000.
[11]T. S. Desser and R. B. Jeffrey, “ Tissue harmonic imaging techniques: Physical principles and clinical applications,”Semin. Ultrasound CT MRI ,vol. 22, pp. 1-10, 2001.
[12]R. Gramiak, P. M. Shah and D. H. Kramer, “ Ultrasound cardiography: contrast studies in anatomy and function,” Radiology, vol. 92, pp. 939-948, 1969.
[13]J. Ophir and K. J. Parker, “Contrast agents in diagnostic ultrasound,” Ultrasound Med. Biol., vol. 15, no.4, pp. 319-333, 1989.
[14]D. Hope Simpson and P. N. Burns, “Perfusion imaging with pulse inversion Doppler and microbubble contrast agents: In vivo studies of the myocardium,”in Proc. IEEE Ultrason. Symp., pp. 1783-1786, 1998.
[15]F. Tranquart, N. Grenier, V. Eder, and L. Pourcelot, “Clinical use of ultrasound tissue harmonic imaging,” Ultrasound Med. Biol., vol. 25, no. 6, pp. 889-894, 1999.
[16]T. Christopher, ”Finite amplitude distortion-based inhomogeneous pulse echo ultrasonic imaging,” IEEE Trans. Ultrason., Ferrroelec., Freq. Control., vol. 44 ,pp. 125–139, 1997.
[17]N. de Jong, “Improvements in ultrasound contrast agents,” IEEE Eng. Med. Biol., vol. 15, pp. 72-82, 1996.
[18]W. T. Shi and F. Forsberg, “Ultrasonic characterization of the nonlinear properties of contrast microbubbles, ” Ultrasound Med. Biol., vol. 26, no. 1, pp. 93-104, 2000.
[19]P. N. Burns, “Harmonic imaging with ultrasound contrast agents,” Clin. Radiol., vol. 51, Suppl. 1, pp. 50–55, 1996.
[20]A. Bouakaz, S. Frigstad, F. J. T. Cate and N. de Jong, “Super harmonic imaging: a new imaging technique for improved contrast detection, ” Ultrasound Med. Biol., vol. 28, no. 1, pp. 59-68, 2002.
[21]D. E. Goertz, M. E. Frijlink, D. Tempel, V. Bhagwandas, A. Gisolf, R. Krams, N. de Jong and A. F. W. van der Steen, “Subharmonic contrast intravascular ultrasound for vasa vasorum imaging, ” Ultrasound Med. Biol., vol. 33, no. 12, pp. 1859-1872, 2007.
[22]R. T. Beyer and S. V. Letcher, “Nonlinear acoustics,” New York: Academic, pp. 202-30, 1969.
[23]C. A. Cain, “Ultrasonic reflection mode imaging of the nonlinear parameter B/A:I. A theoretical basis,” J Acoust Soc Am, vol. 80, pp. 28-32, 1986.
[24]F. A. Duck, “Nonlinear acoustics in diagnostic ultrasound,” Ultrasound Med. Biol., vol. 28, no. 1, pp. 1-18, 2002.
[25]M. F. Hamilton and D. T. Blackstock, “Nonlinear acoustics,” San Diego, CA: Academic Press, 1998.
[26]M. E. Haran and B. D. Cook, “Distortion of finite amplitude ultrasound in lossy media,” J Acoust Soc Am, vol. 73, pp. 774-779, 1983.
[27]C. C. Shen and P. C. Li, “Harmonic leakage and image quality degradation in tissue harmonic imaging.” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 48, pp. 728-736, 2001.
[28]P. Jiang , Z. Mao and J. C. Lazenby, “New harmonic imaging scheme with better fundamental frequency cancellation and higher signal-to-noise ratio,” in Proc. IEEE Ultrason. Symp., vol. 2, pp. 1589-1594, 1998.
[29]D. H. Simpson, C. T. Chin and P. N. Burns, “Pulse inversion Doppler: A new method for detecting nonlinear echoes from microbubble contrast agents,” IEEE Trans. Ultrason. Ferroelect., Freq. Contr., vol. 46, pp. 372-382, 1999.
[30]C.-C. Shen and P.-C. Li, “Motion Artifacts of Pulse Inversion Based Tissue Harmonic Imaging,” IEEE Trans. Ultrason, Ferroelect., Freq. Cont., vol. 49, no. 9, pp. 1203-1211, 2002.
[31]S. Krishnan and M. O’Donnell , “Transmit aperture processing for non-linear contrast agent imaging,” Ultrason Imaging, vol. 18, pp. 77-105, 1996.
[32]C. C. Shen, Y. C. Wang and Y. C. Hsieh, “Third harmonic transmit phasing for tissue harmonic generation,” IEEE Trans. Ultrason. Ferroelect., Freq. Contr., vol. 54, pp. 1370-1381, 2007.
[33]T. Christopher, “Source prebiasing for improved second harmonic bubble-response imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, no. 3, pp. 556-563, 1999.
[34]S. Krishnan, J. D. Hamilton and M. O’Donnell, “Suppression of propagating second harmonic in ultrasound contrast imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp.704-711, 1998.
[35]N. de Jong, M. Emmer, C. T. Chin, A. Bouakaz, F. Mastik, D. Lohse and M. Versluis,““Compression-only” behavior of phospholipids- coated contrast bubbles,” Ultrasound Med. Biol., vol. 33, no. 4, pp. 653-656, 2007.
[36]P. J. Phillips, “Contrast pulse sequences (CPS): imaging nonlinear microbubbles,” in Proc. IEEE Ultrason. Symp., vol. 2, pp. 1739-1745, 2001.
[37]C. C. Shen and P. C. Li, “Pulse-inversion-based fundamental imaging for contrast detection,” IEEE Trans. Ultrason. Ferroelect., Freq. Contr., vol. 50, pp.1124-1133, 2003.
[38]L. Hoff, “Nonlinear response of sonazoid. Numerical simulations of pulse-inversion and subharmonics,” in Proc. IEEE Ultrason. Symp., vol. 2, pp. 1885-1888, 2000.
[39]K. Morgan , M. Averkiou and K. Ferrara, “The effect of the phase of transmission on contrast agent echoes,” IEEE Trans. Ultrason. Ferroelect., Freq. Contr., vol. 45, pp. 872-875, 1998.
[40]Y. Li and J. A. Zagzebski, “Computer model for harmonic ultrasound imaging,” IEEE Trans. Ultrason. Ferroelect., Freq. Contr., vol. 47, pp. 1000-1013, 2000.
[41]W. K. Law, L. A. Frizzell and F. Dunn, “Determination of the nonlinearity parameter B/A of biological media,” Ultrasound Med. Biol., vol. 11, pp. 307-318, 1985.
[42]L. Hoff, “Acoustic Characterization of Contrast Agents for Medical Ultrasound Imaging,” 2001.
[43]K. Chetty, J. V. Hajnal and R. J. Eckersley, “Investigating the nonlinear microbubble response to chirp encoded, multipulse sequences,” Ultrasound Med. Biol., vol. 32, no. 12, pp. 1887-1895, 2006.
[44]S. M. van der Meer, M. Versluis, D. Lohse, C. T. Chin, A. Bouakaz and N. de Jong, “The resonance frequency of SonoVue? :As observed by high-speed optical imaging,” in Proc. IEEE Ultrason. Symp., vol. 1, pp.343-345, 2004.
[45]J. E. Chomas, P. Dayton, D. May and K. Ferrara, “Threshold of fragmentation for ultrasonic contrast agents,” J Biomed Opt., vol. 6,pp. 141-150, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔