(18.232.50.137) 您好!臺灣時間:2021/05/06 18:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖昕昱
研究生(外文):Hsin-Yu Liao
論文名稱:IEEE802.16e之具有基於服務品質之動態資源配置之優先權允入控制
論文名稱(外文):Prioritized Admission Control with QoS-Based Dynamic Resource Allocation in IEEE 802.16e
指導教授:鍾順平
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:54
中文關鍵詞:頻寬預留允入控制寬頻無線存取IEEE 802.16eWiMAX服務品質
外文關鍵詞:bandwidth reservationadmission controlbroadband wireless access (BWA)IEEE 802.16eWiMAXquality of serviceQoS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:118
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
IEEE 802.16e 移動寬頻無線存取網路系統的發展主要是為了滿足多種不同快速成長中的網路服務需求。為了達到多種不同的服務所需要的服務品質,一個連結導向、允入控制和資源預留的機制是必要的。為了改善給IEEE 802.16e的服務品質,在這篇論文中我們提出了一套基於服務品質之動態資源配置之優先權允入控制的機制給IEEE 802.16e系統,而這IEEE 802.16e系統使用了正交分頻多工和採用了可調適的調變和編碼技術。在這篇論文所提的機制中,我們動態的預留了一些系統的資源提供給那些準備有可能交握的移動用戶並且提供給這些移動用戶所需的保證資源。在IEEE 802.16e中提供了五種不同服務等級的服務給這些移動用戶,而我們這篇論文中所提出的機制也符合了IEEE 802.16e中所定義的服務品質參數。在系統效能改善方面,動態頻寬預留和交握佇列機制提供了更高的優先權給有交握需求的使用者,而優先權允入控制機制則提供了各種不同的允入優先權給各種不同的服務需求。在這篇論文中我們使用了從實體層到網路應用層的跨層級式模擬去評估我們所提出的機制。從模擬結果中我們可以得知,所提出來的機制不僅僅最大化頻寬使用率而且大大的改善了交握的連線失敗機率和含權重的阻塞機率,並且我們所提出的機制還提供了一個合理的優先權順序給予在IEEE 802.16e中不同服務等級的新連線請求和交握連線請求。特別是這個利用了動態頻寬預留和交握佇列的機制,可以讓更多的新連線請求和交握連線請求允入,並且不會讓目前已在連線的服務品質下降。
The IEEE 802.16e Mobile Broadband Wireless Access Networks (MBWANs) system is developed to cater for the rapidly growing requirement for various wireless services. Since the various services provided by IEEE802.16e are connection-oriented, admission control and associated resource reservation mechanisms are needed to achieve desired quality of service (QoS). In order to improve the QoS-guaranteed service for IEEE 802.16e-base MBWANs, this thesis proposes a prioritized admission control with QoS-based dynamic resource allocation policy for the IEEE802.16e system that use the orthogonal frequency division multiple access and adopt the adaptive modulation and coding technique. In the proposed policy, we reserve some system resource as admission guard bandwidth, which is dynamically adjusted according to the estimation of potential handover services. Because IEEE 802.16e supports five classes of service as well as mobility, this proposed policy is compatible with the QoS parameters for each service class defined in the standard. As improvements, the dynamic guard channel and handover queue schemes are used to give handover connections higher priority and a prioritized admission control scheme to prioritize different service classes. The proposed policy is evaluated by using the cross-layer simulation that covers from the physical layer to the Internet application layer. The simulation results show the proposed policy not only maximizes the bandwidth utilization, but also greatly improve the performance of connection-dropping probability (CDP) and weighted-blocking probability (WBP), and the use of the proposed schemes provides a reasonable priority order of new originated connections and handover connections of different service classes for the IEEE 802.16e-based MBWANs. Particularly, for handover connections, the proposed scheme takes advantage of dynamic guaranteed channel reservation scheme and handover queue to admit more new incoming and handover connections while the QoS guarantee of the existing connections in not degraded.
CONTENTS
Abstract………………………………………………………………………………......i
誌謝………………………………...............................................................................iii
Contents……………………………………………………………………………... iv
List of Figures………………………………………………………………………...v
List of Tables………………………………………………………………………....vi
Chapter 1 Introduction …...………………………………………………………1
Chapter 2 IEEE 802.16e-based MBWANs overview……………………………3
2.1 Architecture ………………...……………………………………4
2.2 Physical Layer …………………………..……………………….5
2.3 MAC Layer..…………………………………………………….10
Chapter 3 Prioritized admission control with QoS-based dynamic resource
allocation and policy…………………..........................................16
3.1 The proposed prioritized admission control policy……..………16
3.2 The dynamic resource allocation in the proposed scheme……...19
Chapter 4 System model…...……………………………………………………23
4.1 Cell configuration……….……………………………………….23
4.2 System parameters…………….………………………………...24
4.3 Propagation Environments…...…...………………..…………....26
4.4 Station Parameters…...…...………………………...…………....27
4.5 Handover Parameters…...…...………………………………….28
4.6 UDP and IP Parameters…...…...……………………...………....28
4.7 Traffic model assumptions…...…...……………..……………....28
Chapter 5 Simulation results……………..……….……………………………..32
Chapter 6 Conclusions…………………………………………………………..51
References……………………………………………………………………………53











List of Figures
Figure 2-1 IEEE 802.16e-based MBWANs……………………………………….3
Figure 2-2 IEEE 802.16 Protocol Layer.....……………………………………….4
Figure 2-3 Cyclic Prefix insertion in an OFDM symbol........………………….....5
Figure 2-4 WiMAX OFDMA TDD Frame …………………………………….....9
Figure 2-5 Initialization steps ………...…………………………………………..10
Figure 2-6 QoS architecture of IEEE 802.16…………………..………………...13
Figure 3-1 Seven hexagonal cells…..……………………………………………20
Figure 3-2 Handover detection base on signal strength.…………………………20
Figure 4-1 Message flow of handover initiated by the mobile…………....……..28
Figure 4-2 Packet trace in a typical DL FTP session …...……………………….30
Figure 4-3 Packet trace of a typical web browsing session………………...……31
Figure 4-4 Contents of a packet call…………………………..............................31
Figure 5-1 The MS throughput according to the distance from serving BS…......40
Figure 5-2 CDP and CBP of the ACP and ACP&FGC algorithms..…………….40
Figure 5-3 Bandwidth Utilization of the ACP and ACP&FGC algorithms……...41
Figure 5-4 Bandwidth Utilization of the ACP&FGC with various guard
channels………………………………………………………………41
Figure 5-5 CBP and CDP of the PAC&FGC with various guard channels….…...42
Figure 5-6 CBP and CDP for PAC&FGC and PAC&DGC.……………………..42
Figure 5-7 Bandwidth utilization between PAC&FGC and PAC&DGC ………..43
Figure 5-8 CBP and CDP using PAC&DGC with various ∆db …...……………..43
Figure 5-9 Bandwidth Utilization of the ACP&DGC with various ∆db………….44
Figure 5-10 CBP and CDP between PAC&DGC and PAC&DGC&PHQ …...…...44
Figure 5-11 Delay time of the ACP&DGC&PHQ algorithms……………………45
Figure 5-12 Packet Drop Rate of the ACP&DGC&PHQ algorithms..……………45
Figure 5-13 CBP and CDP between PAC&DGC&PHQ and
PAC&DPGC&PHQ…………………………………………………..46
Figure 5-14 CDP using PAC&DPGC&PHQ with various γ..………...………...46
Figure 5-15 CBP using PAC&DPGC&PHQ with various γ…………………….47
Figure 5-16 Connection-dropping probability of the five algorithms……………..47
Figure 5-17 Connection-blocking probability of the five algorithms……………..48
Figure 5-18 The bandwidth utilization (BU) of the five algorithms………………48
Figure 5-19 The Weighted Blocking Probability of the five algorithms………….49
Figure 5-20 The CDP&CBP comparison of various ratio of mobiles per cell……49
Figure 5-21 The BU comparison of various ratio of mobiles per cell…………….50

List of Tables
Table 2-1 OFDM PHY data rates in Mbps ………………………………………6
Table 2-2 Supported Code and Modulations………………..……………….…...7
Table 2-3 The QoS parameter of IEEE 802.16e………………………………...........12
Table 4-1 Possible WiMAX configurations for the 3.3-3.8 GHz band .………..24
Table 4-2 OFDMA Parameters……………………………………….…………24
Table 4-3 TDD Frame configurations used …………………………..………...25
Table 4-4 PUSC Parameters ………………………………………….………...26
Table 4-5 SNR required for considered burst profiles. (CTC – Convolutional Turbo Codes)……………………………………………….………...26
Table 4-6 Fading Margins Adopted……………………………………………..27
Table 4-7 BS and SS parameters………………………………………………..27
Table 4-8 Real-Time traffic model……………………………………………...29
Table 4-9 Non-Real-Time traffic model………………………………………...30
Table 5-1 Useful Maximum DL Data Rates by calculation…………………….33
[1]IEEE 802.16d, “IEEE Standard for Local and Metropolitan Area Networks – Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” October 1, 2004.
[2]IEEE Std 802.16eTM -2005, “IEEE Standard for Local and Metropolitan Area Networks – Part 16: Air Interface for Fixed and Mobile Broadband Wireless Accesdd Systems - Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands,” Feb. 28, 2006.
[3]J. Chen, W. Jiao and Q. Guo, “Providing Integrated QoS Control for IEEE802.16 Broadband Wireless Access Systems” IEEE 62nd Vehicular Technology Conference, vol. 2, pp. 1254-1258, Sept. 2005.
[4]J. Sun, Y. Yao and H. Zhu, “Quality of Service Scheduling for 802.16 Broadband Wireless Access Systems”, IEEE 63rd Vehicular Technology Conference, vol. 3, pp. 1221-1225, Sept. 2006.
[5]J. Chen, W. Jiao and H. Wang, “A Service Flow Management Strategy for IEEE 802.16 Broadband Wireless Access Asystems in TDD Mode,” In Proc. Of the IEEE International Conference on Communications(ICC’05), Vol. 5, May 12-20, 2005, Seoul, Korea, pp. 3422-3426.
[6]J. Chen, W. Jiao and Q. Guo, “An Integrated QoS Control Architecture for IEEE 802.16 Broadband Wireless Access Systems,” In Proc. Of the IEEE Global Telecommunications Conference(GLOBECOM’05), Vol. 6, November 28-December 2, 2005, St. Louis, Missouri, USA, pp. 3330-3335.
[7]K. Wongthavarawat and A. Ganz, “Packet Scheduling for QoS Support in IEEE 802.16 Broadband Wireless Access Systems,” International. Journal of Communication Systems, vol. 16, pp. 81 - 96, Feb. 2003.
[8]H.Wang, W. Li and D. P. Agrawal, “Dynamic Admission Control and QoS for 802.16 Wireless MAN,“ In Proc. Of the Wireless Telecommunications Symposium(WTS’05), April 28-30, 2005, Southern California, USA, pp. 60-66.
[9]W. S. Jeon and D. G. Jeong, “Combined Connection Admission Control and Packet Transmission Scheduling for Mobile Internet Services,” IEEE Transactions on Vehicular Technology, Vol. 55, No. 5, September 2006, pp.1582-1593.
[10]T. W. Yu and V. C. M. Leung, “Adaptive resource allocation for prioritized call admission over an ATM-based wireless PCN,” IEEE J.Select. Areas Commun., vol. 15, pp. 1208–1225, Sept. 1997.
[11]L. Wang, F. Liu, Y. Ji and N. Ruangchaijatupon, ”Admission Control for Non-preprovisioned Service Flow in Wireless Metropolitan Area Networks, ” In Proc. Of the Fourth European Conference on Universal Multiservice Networks(ECUMN’07), February 14-16,2007, Toulouse, France, pp. 243-249.
[12]IETF, “Transmission of IPv4 packets over IEEE 802.16’s IP Convergence Sublayer,” May 28, 2007, http://www.ietf.org/internet-drafts/draft-ietf-16ng-ipv4-over-802-dot-16-ipcs-00.txt.
[13]IETF, “Over the IP Specific part of the Packet Convergence Sublayer in 802.16 Networks,”March 12, 2007, http:www.ietf.org/internet-drafts/draft-ietf-16ng-ipv6-over-ipv6cs-09.txt.
[14]J. Wang, Q. A. Zeng, and D. P. Agrawal, ”Performance Analysis of a Preemptive and Priority Reservation Handover Scheme for Integrated Service-Based Wireless Mobile Networks”, IEEE Transactions on Mobile Computing, 2003, vol. 2, no. 1, pp. 65–75.
[15]J. Wang, Q. A. Zeng, and D. P. Agrawal, ”Performance Analysis of a Preemptive and Priority Reservation Handoff Scheme for Integrated Service-Based Wireless Mobile Networks”, IEEE Transactions on Mobile Computing, 2003, vol. 2, no. 1, pp. 65–75.
[16]T. Camp, J. Boleng, and V. Davies, “A Survey of Mobility Models for Ad Hoc Network Research”, Wireless Communication and Mobile Computing, 2002, pp. 483-502.
[17]“WiMAX Forum Mobile System Profile, Release 1.0 approved specification, Revision 1.4.0”, WiMAX Forum, 2007.
[18]J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX, Prentice Hall, New York, 2007.
[19]COST 231, Digital mobile radio towards future generation systems, Final Report, COST Telecom Secretariat, European Commission, Brussels, Belgium, 1999.
[20]M. Hata, “Empirical formula for propagation loss in land mobile radio services”, IEEE Transactions on Vehicular Technology, vol. 29, pp. 317-325, September 1981.
[21]“Mobile WiMAX – Part I: A Technical Overview and Performance Evaluation”, WiMAX Forum, 2006.
[22]3GPP, Physical Layer Aspects of UTRA High Speed Downlink Packet Access (Release 4), Mar. 2001. 3G TR25.848 V4.0.0.
[23]M. Hart and J.J. Son, “Multi-hop Relay System Evaluation Methodology,” IEEE 802.16j-06/013r3, February 19, 2007, http://relay.wirelessman.org/.
[24]J. Zhang, J. W. Mark and X. Shen, “An Adaptive Handoff Priority Scheme for Wireless MC-CDMA Cellular Networks Supporting Multimedia Applications,” Computer Communications, vol. 28, pp. 1240-1250, November 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔