(3.236.214.19) 您好!臺灣時間:2021/05/10 03:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭仁杰
研究生(外文):Jen-chieh Cheng
論文名稱:二維方柱受自激振動桿作動時之流場與動態渦漩
論文名稱(外文):Flow and Vortex Shedding of Two-Dimensional Square Cylinder Subject to Influence of Self-Excited Vibrating Rod
指導教授:黃榮芳黃榮芳引用關係
指導教授(外文):Rong-fung Huang
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:179
中文關鍵詞:方柱控制桿
外文關鍵詞:square cylindervibrating rod
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在於發展一個利用流體/固體交互作用的自激振動桿技術,應用於方柱流場上,藉以調制方柱表面流場狀況、壓力分佈、升、阻力特性以及尾流區的渦漩逸放。當一支兩端固定且具有細小直徑的彈性圓桿安置在方柱的表面附近某些位置時,由於流體與固體的交互作用,導致小直徑彈性桿的自激振動。藉由表面油膜流觀察方柱表面流場的特徵,可以呈現方柱各表面的分離與再接觸等現象,進而分析出其表面流場狀況。使用表面壓力孔與壓力掃描技術量測方柱表面的壓力分佈,並計算升、阻力係數,同時探討壓力分佈與表面流場特徵的相關性。使用熱線風速儀量測方柱尾流區動態結構的頻率、紊流特性與尾流寬度,並將結果與表面流場特徵態相結合。方柱表面流場的特徵模態與旋轉角有緊密的相關性,依表面與旋轉角的不同,可觀察到方柱側面呈現前緣分離、次臨界與超臨界三種模態;方柱下風面呈現次臨界與次臨界兩種模態。當旋轉角為11o時,方柱兩側面的流場特徵模態轉換為超臨界模態,下風面的流場特徵模態由次臨界轉換為超臨界。在旋轉角11o時升力與阻力係數降到最低值,分別為 -0.91與1.57。根據熱線風速儀輸出的時序圖及所對應的頻譜圖,尾流區渦漩逸放之特徵為次臨界與超臨界模態,顯示紊流加附在週期振盪訊號上的份量頗強。當受控制桿調制時,尾流寬度在旋轉角20o 之前維持一定值。因此,此一控制桿的自激振動會明顯改變方柱的表面流場,下游尾流結構及升、阻力特性。
Development of the self-excited vibrating rod technique and behaviors of the flow field of the square cylinder under modulation of the self-excited vibrating rod were studied in a wind tunnel. By placing a small-diameter elastic rod close enough to a square cylinder at appropriate angles, the flow/solid interaction induced a drastic vibration of the small-diameter rod. Surface oil-flow techniques were used in the topological flow analysis and the flow patterns were discussed. The surface pressures are measured by the pressure tapes in conjunction with a home-made pressure scanner. The lift and drag coefficients are calculated by using the measured surface pressure data. The wake instability frequency and statistical turbulence properties are probed by a hot-wire anemometer. It is found that the surface flow patterns are closely related to the inclined angle of the cylinder. The lateral surfaces of the square cylinder present three characteristic flow modes: leading-edge separation, subcritical, and supercritical. At the critical inclined angle of about 11o, the lift and drag coefficients attain the minimum values and the Strouhal number reaches a maximum because the wake width and wake length are reduced to a minimum due to the change of the characteristic modes of surface flow. It can be concluded that the surface pressure distribution, lift/drag coefficients, and wake characteristics are dramatically affected by the surface flow patterns. The cylinder inclined angle, Reynolds number, and vibrating rod strongly influence the surface flow patterns.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
符號索引 vi
圖表索引 viii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 矩形柱與方柱之流場特性 2
1.2.2 流動控制 5
1.3 研究目的與方法 9
第二章 研究構思及實驗設備、儀器與方法 10
2.1 研究構思 10
2.2 實驗設備 10
2.2.1 風洞 10
2.2.2 方柱模型 11
2.2.3 控制桿材質與位置選定 12
2.3 實驗儀器及方法 13
2.3.1 自由流速的偵測 13
2.3.2 控制桿振動頻率的感測 13
2.3.3 控制桿振動軌跡的可視化與振動幅度的量化 14
2.3.4 表面油膜流法 14
2.3.5 壓力掃描器 21
2.3.6 尾流渦漩逸放頻率的偵測 22
第三章 控制桿的自激振動特性 24
3.1 控制桿振動特性 24
3.1.1 控制桿的振動模態 24
3.1.2 控制桿的振動頻率 25
3.1.3 控制桿的振幅 26
3.2 控制桿振動的物理機制 26
第四章 表面流特性 30
4.1 方柱A面之流場 30
4.2 方柱B面之流場 31
4.2.1 Rod position 3 31
4.2.2 Rod position 10 33
4.3 方柱C面之流場 34
4.3.1 Rod position 3 35
4.3.2 Rod position 10 36
4.4 方柱D面之流場 37
4.4.1 Rod position 3 38
4.4.2 Rod position 10 39
4.5 方柱流場拓樸分析 40
4.5.1 Rod position 3 42
4.5.2 Rod position 10 44
第五章 表面壓力分佈與升阻力 46
5.1 方柱表面壓力分佈 46
5.1.1 Rod position 3 方柱A面壓力分佈 46
5.1.2 Rod position 3 方柱B面壓力分佈 47
5.1.3 Rod position 3 方柱C面壓力分佈 47
5.1.4 Rod position 3 方柱D面壓力分佈 48
5.1.5 Rod position 10 方柱A面壓力分佈 49
5.1.6 Rod position 10 方柱B面壓力分佈 50
5.1.7 Rod position 10 方柱C面壓力分佈 50
5.1.8 Rod position 10 方柱D面壓力分佈 50
5.1.9 雷諾數對方柱表面壓力之影響 52
5.2 方柱表面升阻力特性 52
5.2.1 Rod position 3 53
5.2.2 Rod position 10 54
第六章 尾流區渦漩逸放 56
6.1 尾流區渦漩逸放之頻率特性 57
6.1.1 Rod position 3 57
6.1.2 Rod position 10 59
6.2 尾流寬度 61
6.2.1 Rod position 3 61
6.2.2 Rod position 10 62
第七章 結論與建議 64
7.1 結論 64
參考文獻
[1]Nakayama, Y., and Boucher, R. F., Introduction to Fluid Mechanics,
Arnold, Great Britain, 1999.
[2]Lienhard, J. H., Synopsis of Lift Drag and Vortex Frequency Data for Rigid Circular Cylinders, Research Division Bulletin 300, Washington State University, 1966.
[3]Huang, R. F., Chen, J. M., and Hsu C. M., “Modulation of surface flow and vortex shedding of a circular cylinder in the subcritical regime by self-excited vibration rod,” Journal of Fluid Mechanics, Vol. 555, 2006, pp. 321-352.
[4]林柏豪, 二維方柱之流場與動態渦漩研究,碩士學位論文, 台灣科技大學機械工程系,July 2007.
[5]Huang,R.F., and Mao,S.W., “Separation Control on a Cantilever Wing with a Self-Excited Vibrating Rod,” Journal of Aircraft, Vol. 39, No. 4, 2002, pp. 609-615.
[6]Zdravkovich, M. M., “Different modes of vortex shedding: an overview,” Journal of Fluids and Structures, Vol. 10, No. 5, 1996, pp. 427-437.
[7]Matsumoto, M., “Vortex shedding of bluff bodies: a review,” Journal of Fluids and Structures, Vol. 13, No. 7-8, 1999, pp. 791-811.
[8]Bearman, P. W., and Trueman, D. M., “An investigation of the flow around rectangular cylinders,” Aeronautical Quarterly, Vol. 23, 1972, pp. 229-237.
[9]Noda, H., and Nakayama, A., “Free-stream turbulence effects on the instantaneous pressure and forces on cylinders of rectangular cross section,” Experiments in Fluids, Vol. 34, No. 3, 2003, pp. 332-344.
[10]Okajima, A., “Strouhal numbers of rectangular cylinders,” Journal of Fluid Mechanics, Vol. 123, Oct. 1982, pp. 379-398.
[11]Yang, W. J., Flow Visualization III, Proceedings of the third international symposium on flow visualization, September 6-9, 1983, pp. 381-386.
[12]Luo, S. C., “Vortex wake of a transversely oscillating square cylinder: A flow visualization analysis,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 43, No. 1, 1992, pp. 97-119.

[13]Bearman, P. W., and Obasaju, E. D., “An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders,” Journal of Fluid Mechanics, Vol. 119, 1982, pp. 297-321.
[14]Saha, A. K., Muralidhar, K., and Biswas, G., “Experimental study of flow past a square cylinder at high Reynolds numbers,” Experiment in Fluids, Vol. 29, No. 1-6, 2000, pp. 553-563.
[15]Rockwell, D. O., “Organized fluctuations due to flow past a square cross section cylinder,” Journal of Fluids Engineering, Vol. 99, 1977, pp. 511-516.
[16]Kwok, K. C. S., “Effects of turbulence on the pressure distribution around a square cylinder and possibility of reduction,” Journal of Fluids Engineering, Vol. 105, No. 2, 1983, pp. 140-145.
[17]Hasan, M. A. Z., “The near wake structure of a square cylinder,” International Journal of Heat and Fluid Flow, Vol. 10, No. 4, 1989, pp. 339-348.
[18]Chen, J. M., and Liu, C. H., “Vortex shedding and surface pressures
on a square cylinder at incidence to a uniform air stream,” International Journal of Heat and Fluid Flow, Vol. 20, No. 6, 1999, pp. 592-597.
[19]Taylor, I., and Vezza, M., “Prediction of unsteady flow around square and rectangular section cylinders using discrete vortex method,” Journal of wind Engineering and Industrial Aerodynamics, Vol. 82, 1999, pp. 247-269.
[20]Lee, B. E., “The effect of turbulence on the surface pressure field of a square prism,” Journal of Fluid Mechanics, Vol. 69, part 2, 1975, pp. 263-282.
[21]Naudascher, J. R., and Weske, B. F., “Exploratory study on damping of galloping vibrations,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 8, 1981, pp. 211-222.
[22]Koutmos, P., and Mavridis, C., “A computational investigation of unsteady separated flows,” International Journal of Heat and Fluids Flow, Vol. 18, No. 3, 1997, pp. 297-306.
[23]Murakami, S., and Mochida, A., “On turbulent vortex shedding flow past 2D square cylinder predicted by CFD,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 54-55, Feb. 1995, pp. 191-211.
[24]Tamura, T., and Kuwahara, K., “Numerical study of aerodynamic behavior of a square cylinder,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 33, No. 1-2, 1990, pp. 161-170.
[25]Vickery, B. J. “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulent stream,” Journal of Fluid Mechanics, Vol. 25, part 3, 1966, pp. 481-494.
[26]Obasaju, E. D., “An investigation of the effects of incidence on the flow around a square section cylinder,” Vol. 34, 1983, pp. 243-259.
[27]Lyn, D., and Rodi, W., “The flapping shear layer formed by flow separation from the forward corner of square cylinder,” Journal of Fluid Mechanics, Vol. 267, May. 1994, pp. 353-376.
[28]Knisely, C. W., “Strouhal numbers of rectangular cylinders at incidence: a review and new data,” Journal of Fluids and Structures,
Vol. 4, 1990, pp. 371-393.
[29]Sarioglu, M., Akansu, Y. E., and Yavuz, T., “Control of flow around square cylinders at incidence by using rod,” AIAA Journal, Vol. 43, No. 7, 2005, pp. 1419-1426.
[30]Bearman, P. W., “Vortex shedding from oscillating bluff bodies,” Annual Review of Fluid Mechanics, Vol. 16, 1984, pp. 195-222.
[31]In, K. M., Choi, D. H., and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
[32]Schewe,G.,“Reynolds-Number Effects in Flow Around More-or-Less Bluff Bodies,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, 2001, pp. 1267-1289.
[33]Bearman, P. W., and Harvey, J. K., “Control of Circular Cylinder Flow by the Use of Dimples,” AIAA Journal, Vol. 31, No. 10, 1993, pp. 1753-1756.
[34]Zdravkovich, M. M., “Review and Classification of Various Aerodynamic and Hydrodynamic Means for Suppression Vortex Shedding,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 7, 1981, pp. 145-189.
[35]Fiedler, H. E., ”Control of Free Turbulent Shear Flows,” Flow Control – Fundamentals and Practices, edited by M. Gad-el-Hak, A.
Pollard, and J. P. Bonnet, Springer-Verlag, Berlin, 1998, pp. 335-429.
[36]Gad-el-Hak, M, Flow Control – Passive, Active, and Reactive Flow Management,Cambridge University Press,New York,2000.
[37]Ghee, T. A., and Leishman, J. G., “Unsteady Circulation Control Aerodynamics of a Circular Cylinder with Periodic Jet Blowing,” AIAA Journal, Vol. 30, No. 2, 1992, pp. 289-299.
[38]Strykowski, P. J., and Sreenivasan, K. R., “On the Formation and Suppression of Vortex Shedding at Low Reynolds Numbers,” Journal of Fluid Mechanics, Vol. 218, 1990, pp. 71-107.
[39]Wang, A. -B., and Chang, Y. -C., “Experimental Investigation of Suppression of Vortex Shedding from a Circular Cylinder,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol. 28, 1996, pp. 249-254.
[40]Sakamoto, H., Tan, K., and Haniu, H., “An Optimum Suppression of Fluid Forces by Controlling a Shear Layer Separated From a Square Prism,” Journal of Fluids Engineering, Vol. 113, 1991, pp. 183-189.
[41]Sakamoto, H., and Haniu, H., “Optimum Suppression of Fluid Forces Acting on a Circular Cylinder,” Journal of Fluids Engineering, Vol. 116, 1994, pp. 221-227.
[42]Prasad, A., and Williamson, C. H. K., “A Method for the Reduction of Bluff Body Drag,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 69-71, 1997, pp. 155-167.
[43]Tsutsui, T., Igarashi, T., “Drag Reduction of a Circular Cylinder in an Air-Stream,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 90, 2002, pp. 527-541.
[44]Bouak, F., and Lemay, J., “Passive Control of the Aerodynamic Forces Acting on a Circular Cylinder,” Experimental Thermal and Fluid Science, Vol. 16, 1998, pp. 112-121.
[45]Blevins, R. D., “The Effect of Sound on Vortex Shedding from Cylinders,” Journal of Fluid Mechanics, Vol. 161, 1985, pp. 217-237
[46]Lyn, D. A., “The flapping shear layer formed by flow separation from the forward corner of a square cylinder,” Journal of Fluid Mechanics, Vol. 267, 1994, pp. 353-376.
[47]Vickery, B. J., “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in aturbulent stream,” Journal of Fluid Mechanics, Vol. 25, part 3, 1966, pp. 481-494.
[48]Maskell, E. C., Flow Separation in Three Dimensions, Royal Aircraft Estabilishment Report 2565, 1955.
[49]Schlichtingm, H., Boundary Layer Theory, 7th ed, McGraw-Hill, New York, 1993, pp. 699.
[50]Squire, L. C., “The motion of a thin oil sheet under the steady boundary layer on a body,” Journal of Fluid Mechanics, Vol. 11, Sep. 1961, pp. 161-179.
[51]Merzkrich, W., Flow Visualization, Academic Press, New York, 1974, pp. 53-56.
[52]Roshko, A., “Experiments on the Flow Past a Circular Cylinder at very High Reynolds Number,” Journal of Fluid Mechanics, Vol. 10, 1961, pp. 345-356.
[53]Blevins, R. D.,“Analysis of Vortex-Induced Vibration,” Flow-Induced Vibration, 2nd ed., Van Nostrand Reinhold, New York, 1992, pp. 58-60.
[54]Den Hartog, J. P., Mechanical Vibration, 4th Ed., McGraw-Hill, New York, 1956.
[55]Dowell, E.H., “Aeroelastic Problems of Civil Engineering Structures,” A Modern Course in Aeroelasticity, Sijthoff & Noordhoff, The Netherlands, 1978, pp. 281-325.
[56]Merzkrich, W., Flow Visualization, Academic Press, New York, 1974, pp. 53-56.
[57]Bertin, J. J., and Swth, M. L., Aerodynamics for Engineering, 2nd ed., Prentice Hall, Englewood Cliffs, 1989, pp. 204-213 and pp. 235-257.
[58]Lighthill, M. J., Laminar Boundary Layer, Ed. Rosenhead, L., Oxford University, College of Engineer, 1963, pp. 44-88
[59]Perry, A. E., and Fairlie, B. D., “Critical points in flow patterns,” Advances in Geophysics, Vol. 18, No. 13, 1974, pp. 299-315.
[60]Perry, A. E., Chong M. S., and Lim, T. T., “The vortex-shedding process behind two-dimensional bluff bodies,” Journal of Fluid Mechanics, Vol. 116, Mar. 1982, pp. 77-90.
[61]Steiner, T. R., and Perry, A. E., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 2. Far-wake structures,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 271-298.
[62]Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical
Studies of the flows around free or surface-mounted obstacles applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, Part 1, 1978, pp. 179-200.
[63]Huang, R. F., and Lee, H. W., “Turbulence effect on frequency characteristics of unsteady motions in wake of wing,” AIAA Journal, Vol. 38, No. 1, 2000, pp. 87-94.
[64]Ozgoren, M., “Flow structure in the downstream of square and circular cylinders,” Flow Measurement and Instrumentation, Vol. 17, No. 4, 2006, pp. 225-235.
[65]Luo, S. C., Chew, Y. T., and Ng, Y. T., “Characteristics of square cylinder wake transition flows,” Physics of Fluids, Vol. 15, No. 9, 2003, pp. 2549-2559.
[66]Lee, S., “Unsteady aerodynamic force prediction on a square cylinder using k-ε turbulence models,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 67-68, Apr.-Jun. 1997, pp. 79-90.
[67]Suzuki, H., Inoue, Y., Nishimura, T., Fukutani, K., and Suzuki, K., “Unsteady flow in a channel obstructed by a square rod(crisscross motion of vortex),” International Journal of Heat and Fluid Flow, Vol. 14, No. 1, 1993, pp. 2-9.
[68]Perry, A. E. and Steiner T. R., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation process,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 233-270.
[69]Coutanceau, M., and Pineau G.., Some Typical Mechanics in the Early Phase of the Vortex-Shedding Process from Particle – Streak Visualization. Atlas of Visualization III, eds. Nakayama, Y. and Tanida, Y., CRC Press, Boca Raton, 1997, pp. 43-68.
[70]van Oudheusden et al., “Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence,” Experiments in Fluids, Vol. 39, 2005, pp. 86-98.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔