跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/06 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李奇曄
研究生(外文):Chi-Yeh Lee
論文名稱:傳統式與吹吸式氣櫃強健性數值分析
論文名稱(外文):Numerical assessment of robustness for conventional and push-pull fume hoods
指導教授:陳明志陳明志引用關係
指導教授(外文):Ming-Jyh Chern
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:144
中文關鍵詞:強健性分析吹吸式氣櫃手臂影響人經過影響
外文關鍵詞:assessment of robustnesspush-pull fume hoodarm effectwalk-by effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要使用數值模擬分析的方式,對於傳統式氣櫃以及吹吸式氣櫃進行強健性分析。分析的項目為,伸手平臂效應。伸手運動的影響。以及人經過氣櫃門口所造成的影響。傳統式氣櫃為於氣櫃頂部進行抽氣,固定流量Q為0.5 ms-1,進行有人伸手平臂效應和有人經過氣櫃門口所造成的影響。吹吸式氣櫃在改變抽氣位置於氣櫃底部前方,形成前下吸之型式,並於拉門底部提供補給吹氣氣流,形成一道氣簾。本文採兩種計算方式一種使用計算方式為有限體積法,另一種為使用有限元素法。這兩種計算方式配合k-ε紊流模式求解質量方程式、動量方程式與質傳方程式來模擬流動情形。
模擬的結果中可以知道,在平臂效應下。傳統式氣櫃在呼吸處的汙染物濃度上升,造成使用者的危險。吹吸式氣櫃在平臂效應下性能反而更好,雙手將汙染物包覆在中間使得污染物不易擴散。在有人伸手運動的模擬中,使用吹吸式氣櫃除了分析流場與濃度場的變化外。更進一步測試不同吹吸氣速度比,並且找出在這個情況下較佳的使用範圍。在有人經過運動測試中,傳統式氣櫃受人體運動影響很大,在人體經過後產生極大的渦漩將櫃內污染物捲出。並且受尾流影響無法迅速地恢復正常運作。在開口面上,整體污染物濃度幾乎都高於標準值(0.1ppm)100倍以上。吹吸式氣櫃在有人經過測試中表現相當的良好,在正確的吹吸比下污染物濃度只有很短的時間高於標準值(0.1ppm),大部分的時間都低於標準時很多。此外更根據不同吹吸比的測試找出在有人經過下建議使用的吹吸比例,供設計人員參考。
The aim of this study is to investigate robustness of the conventional and push-pull fume hoods using numerical approaches. We consider three the followings situations. The first one is the arm effect.
The second is the effect of moving arm. The last one is the walk-by effect.
In this study, we use two commercial software based on the finite volume and finite element methods to simulation these problems. One uses the finite volume method, the other uses the finite element method. We also use standard k-εturbulence model to describe characteristics of a turbulent flow. In the study of the arm effect, we find that the conventional fume hood is unable to capture pollutants. On the other hand, we find that the push-pull fume hood is not affected by the arm effect. In the effect of moving arms, we find that moving hands generates some vortices in the push-pull fume hood cupboard.
However, the air curtain is still robust and pollutants can be captured by the capture. In the study of walk-by effect, we find the ability of push-pull fume hood to capture pollutant is better than the conventional fume hood. The pollutant concentration in the conventional fume hood is more than 100 times the standard. Finally, we propose the range for combination of push and pull flows in which the air curtain can resist the vortex effect due to walk-by.
目錄
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
符號索引. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
1 導論1
1.1 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 美國&歐洲氣櫃性能測試標準. . . . . . . . . . . . . . . . . . . . . 5
1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 物理模型與數值方法9
2.1 數值方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 控制方程式. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 紊流模式. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 紊流傳輸方程式. . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 邊界設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 有限體積法與STAR-CDTM . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 有限元素法與CFDesignTM . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 數值模式驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3 操作員平臂效應之強健性分析23
3.1 固定伸平手臂傳統式氣櫃之影響. . . . . . . . . . . . . . . . . . . . 23
3.1.1 流場分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 汙染物質擴散分析. . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 有伸手與無伸手流場及濃度場比較. . . . . . . . . . . . . . 25
固定伸平手臂吹吸式氣櫃之影響. . . . . . . . . . . . . . . . . . . . 27
3.2.1 流場分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 汙染物質擴散分析. . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 有伸手與無伸手流場及濃度場比較. . . . . . . . . . . . . . 28
3.2.4 穩態計算結果三維濃度場. . . . . . . . . . . . . . . . . . . 30
3.2.5 吹吸式氣櫃流場型態修正. . . . . . . . . . . . . . . . . . . 30
吹吸式氣櫃手部運動強健性. . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 流場分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 12點污染物濃度偵測. . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 吹吸式氣櫃其他吹吸比的比較. . . . . . . . . . . . . . . . . 33
3.3.4 吹氣0.5 ms−1 吸氣9 ms−1 . . . . . . . . . . . . . . . . . . . 34
3.3.5 吹氣4.5 ms−1 吸氣11 ms−1 . . . . . . . . . . . . . . . . . . 34
3.3.6 吹氣4.5 ms−1 吸氣20 ms−1 . . . . . . . . . . . . . . . . . . 34
3.3.7 吹吸式氣櫃流場型態修正. . . . . . . . . . . . . . . . . . . 35
小結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
作員人員移動對氣櫃影響之強健性分析37
人員走動對於傳統式氣櫃影響. . . . . . . . . . . . . . . . . . . . . 37
4.1.1 流場分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 濃度等位面隨時間變化圖. . . . . . . . . . . . . . . . . . . 40
4.1.3 12點濃度與時間關係比較. . . . . . . . . . . . . . . . . . . 42
人員走動對於吹吸式氣櫃影響. . . . . . . . . . . . . . . . . . . . . 43
4.2.1 流場分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 濃度等位面隨時間變化圖. . . . . . . . . . . . . . . . . . . 46
4.2.3 12點濃度與時間關係比較. . . . . . . . . . . . . . . . . . . 47
吹吸式氣櫃其他吹吸比的比較. . . . . . . . . . . . . . . . . . . . . 48
4.3.1 吹氣3 ms−1 吸氣14 ms−1 . . . . . . . . . . . . . . . . . . . 49
4.3.2 吹氣4.5 ms−1 吸氣11 ms−1 . . . . . . . . . . . . . . . . . . 49
4.3.3 吹氣4.5 ms−1 吸氣20 ms−1 . . . . . . . . . . . . . . . . . . . 50
4.3.4 吹吸式氣櫃流場型態修正. . . . . . . . . . . . . . . . . . . 50
4.4 小結. . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 51
5 結論與建議53
5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
參考文獻
[1] Huang, R.F., Lin, S.Y., Jan, S.Y., Hsieh, R.H., Chen, Y.K., Chen, C.W.,
Yeh, W.Y., Chang, C.P., Shih, T.S., and Chen, C.C. 2005 Aerodynamic char-
acteristics and design guidelines of push-pull ventilation systems. Annals of
Occupational Hygiene 49, 1-15.
[2] Chern, M.J. and Cheng, W.Y. 2007 Numerical investigation of turbulen t
diffusion in push-pull and exhaust fume cupboards. Annals of Occupational
Hygiene 51. 517-531.
[3] Fletcher, B. and Johnson, A.E. 1992 Containment test of fume cupboards - I
methods. Annals of Occupational Hygiene 36, 239-252.
[4] Fletcher, B. and Johnson, A.E. 1992 Containment test of fume cupboards -
II Test room measurements. Annals of Occupational Hygiene 36, 395-405.
[5] Ivary, R.E., First, M.W. and Diberardinis, L.J. 1989 A new method for quan-
titative in-use testing of laboratory fume hoods. American Industrial Hygiene
Association Journal 50, 275-280.
[6] Saunders, C.J., Johnson, A.E., and Fletcher, B. 1994 Flow in the region of
fume cupboard sash handles. Proceedings of the Fourth International Symposium
on Ventilation for Control, National Institute of Occupational Health,
Stockholm, Sweden, 264-269.
[7] Ozdemir, I.B., Whitelaw, J.H., and Bicen, A.F. 1993 Flow structures and
their relevance to passive scalar transport in fume cupboard. Proceedings of
the Institution of Mechanical Engineers, Part C-Journal of Mechanical Engineering
Science 207,103-115.
[8] Durst, F. and Pereira, J.C.F. 1991 Experimental and numerical investigation
of the performance of fume cupboard. Building and Environment 26, 153-164.
[9] Ekberg, L.E., and Melin, J. 1991 Required response time for variable air
volume fume hood controllers. Annals of Occupational Hygiene 44, 143-150.
[10] Hu, P., Ingham, D.B., and Wen, X. 1996 Effect of the location of the exhaust
dust, an exterior obstruction and handle on the air flow inside and around a
fume cupboard. Annals of Occupational Hygiene 40, 127-144.
[11] Hu, P., Ingham, D.B. andWen, X. 1998 Effect of baffles and a louvered bypass
on the airflow and the convective patterns of contaminant inside a fume hood.
American Industrial Hygiene Association Journal 59, 303-312.
[12] Graham, P.N., Raymond, P.C., and Mervyn, L.D. 1998 Computational fluid
dynamics as a method for assessing fume cupboard performance. Annals of
Occupational Hygiene 44, 203-217.
[13] Lan, N. S. and Viswanathan, S. 2001 Numerical simulation of airflow around
a variable volume/constant face velocity fume cupboard. American Industrial
Hygiene Association Journal 62, 303-312.
[14] Tseng, L.C., Huang, R.F., Chen, C. C. and Chang, C. P. Correlation be-
tween airflow patterns and performance of laboratory fume hood. Journal of
Occupational and Environmental Hygiene. 3,694-706
[15] Tseng, L.C., Huang, R.F., Chen, C.C., and Chang, C.P. 2007 Effects of sash
movenment and walk-bys on aerodynamics and contaminant leakage of labo-
ratory fume cupboards. Industrial Health 45, 199-208.
[16] ASHRAE, 1995 Method of Testing Performance of Laboratory Fume Hood,
ANSI/ASHRAE 110-1995, American Society of Heating, Refrigerating and
Air-Conditioning Engineers, Atlanta, GA, USA.
[17] prEN14175-3, 2003 Fume cupoards-parts 3: type test method (prEN14175-
3), European Committee for Standradization, http://standards.mackido.com-
standards24 view 3413.html.
[18] Huang, R.F., Wu, Y.D. and Chen, H. D. 2006 Development of air curtain-
isolated laboratory fume cabinet with considerations of aerodynamics (I) -
qualitative evaluation by flow visualization, Annals of Occupational Hygiene.
51,189-206.
[19] Moin, P. and Spapart, P.R. 1989 Contribution of numerical simulation data
bases to the physics, modeling, and measurement of turbulence. Advances in
Turblence, Hemisphere, New York, USA, 11-38.
[20] Jones, W.P. and Launder, B.E. 1972 The calculation of low-Reynolds number
phenomena with a two-equation model of turbulence. Internation Journal of
Heat and Mass Transfer 16, 1119-1130.
[21] Kirkpatrick, A.T. 1998 Numerical simulation of laboratory fume hood airflow
performance. ASHRAE Transactions 104, 999-1011.
[22] Leonard, B.P. 1979 A stable and accurate convective modeling procedure
based on quadratic upstream interpolation. Computer Methods in Applied
Mechanics and Engineering 19, 59-98.
[23] Perry, A.E. and Steiner, T.R. 1987 Large-scale vortex structures in turbulent
wakes behind bluff bofies. Part 1. Vortex formation process. Journal Fluid
Mechanics 174, 233-270.
[24] ACGIH, 2004 American Conference of Governmental Industrial Hygienists.
Industrial Ventilation, A Manual of Recommended Practice 25th ed., Cincin-
nati, Ohio, USA, Chapter 3, 2-3.
[25] Williamson, C.H.K. 1985 Evolution of a single wake behind a pair of bluff
bodies. Journal of Fluid Mechanics 159, 1-18. Proceedings of the 8th International
Conference on Numerical Methods in Laminar and Turbulent Flow,
Pineridge Press, Swansea, U.K., 261- 272.
[26] Chern, M.J. and Ma, C.H. 2007 Tseng, L.C. for push-pull ventilation system.
Journal of Occupational and Environmental Hygiene 4, 184-197
[27] 勞委會勞工安全衛生研究所,吹吸式氣罩設計與操作指引研究, 2003 勞委會勞工安全衛生研究所研究報告, IOSH92-H102。
[28] Hu, P., Ingham, D.B., and Wen, X. 1993 The convection of containment
inside a fume cupboard. Proceedings of the 7th Annual Conference of Aerosols,
Aerosol Society, U.K., 26-31
[29] Tseng, L.C., Huang, R.F., Chen, C.C., and Chang, C.P. 2007 Aerodynamics
and performance verifications of test methods for laboratory fume cupboards.
Annals of Occupational Hygiene 51, 173-187.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top