(3.238.96.184) 您好!臺灣時間:2021/05/12 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾俊元
研究生(外文):Chun-Yuan Tseng
論文名稱:動態光罩快速成型系統光聚合PCL-PEG-PCL製作3D組織工程支架
論文名稱(外文):Fabrication of Photo-polymerized PCL-PEG-PCL Three-dimensional Scaffolds by Dynamic Mask Rapid Prototyping System
指導教授:鄭逸琳
指導教授(外文):Yih-Lin Cheng
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:102
中文關鍵詞:光交聯劑PEG-HEMA動態光罩快速成型系統3D多孔性支架
外文關鍵詞:Optical cross-linker PEG-HEMADynamic mask rapid prototyping system3D porous scaffold.
相關次數:
  • 被引用被引用:9
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在先前實驗室所發展的動態光罩快速成型系統中,使用PCL-PEG-PCL生醫材料混合光交聯劑PEG-HEMA,將其溶於氯仿內,並且成功的製作出支架。然而PEG-HEMA在氯仿內的溶解效果是需要改善的,除此之外舊系統無法製作出多於五層的多孔性支架,因此在此篇研究中,PEG-HEMA的合成與系統的改善,並且製作出層厚較厚且較精準的3D支架。
在PEG-HEMA的合成中,使用98%的HEMA來取代96%的HEMA,此PEG-HEMA不僅僅是在氯仿下可以完全的溶解並且也在其他的溶劑有相當好的溶解效果,例如丙酮,因此PEG-HEMA 以及 PCL-PEG-PCL二次溶解的問題也將一併被改善。此外,系統的架構被改善得更加穩定。以DLP數位光學鏡頭投射器直接取代動態光罩產生器,因此新的系統能有效改善光罩圖形及成型效果。
在3D多孔性支架製作方面,所達到的層數與結果都已較舊系統的佳,但由於前一層已固化的支架所造成光反射的現象,導致支架有過度固化以及在堆疊六層後支架孔洞產生封閉的情況。為此使用三種方法來嘗試解決這個問題—減少每層的固化時間、利用遞減支架來補償支架放大的影響以及使用組合式支架的方式。從結果來看,組合式支架的製作方式能夠縮小支架尺寸誤差,以六層支架來說,其誤差可從40%縮小到5.6%。利用組合式的方法,可能製作出多層且精確的3D支架,並且沒有孔洞封閉的問題。
In the previous Dynamic Mask Rapid Prototyping System developed in our laboratory, PCL-PEG-PCL was mixed with PEG-HEMA in chloroform and cured to create scaffolds successfully. However, the solubility of PEG-HEMA in chloroform is still an issue to be improved. Besides, the old system could not create scaffolds more than 5 layers without pore closure. Therefore, in this research, PEG-HEMA synthesis and the system were improved. Moreover, thicker and more precise 3D scaffolds were fabricated.
In PEG-HEMA synthesis, 98% HEMA was used to replace 96% HEMA. The new PEG-HEMA can be dissolved completely in not only chloroform but also other solvents, such as acetone. The re-dissolution issue of PEG-HEAM and cured PCL-PEG-PCL was also improved. Besides, the structure of the system was redesigned to provide stability and a DLP projector was adopted directly to replace the assembled dynamic mask generator. The new system was capable of providing better mask images and performance.
In 3D porous scaffold fabrication, the achievable layers and results were better than the old system, but due to the reflection of previous cured layers, over-cure happened and pores may be closed after 6 layers. Three approaches were tested to solve this problem—decreasing the curing time of later layers, decreasing the scaffold dimensions of later layers for compensation, and assembling basic scaffold sets. As a result, assembling basic scaffold sets was the best among three and could reduce the scaffold dimension error effectively from 40% to 5.6% for a 6-layer scaffold. With this assembly strategy, it is possible to fabricated thick and precise 3D scaffolds without pose closure problem.
摘要……………………………………………………………………I
Abstract…………………..........................................................................II
致謝…………………………………………………………………….IV
目錄……………………………………………………………………V
圖目錄………………………………………………………………VIII
表目錄…………………………………………………………………XII
第一章 緒論……………………..…………………………………...….1
1.1 前言……………………………………………………………1
1.2 研究背景與動機………………………………………………..2
1.3 研究目的與方法………………………………………………..3
1.4 論文撰寫架構…………………………………………………5
第二章 文獻探討………………………………………………………..6
2.1 組織工程介紹…………………………………………………6
2.1.1支架材料之特性…………………………………………8
2.1.2高分子生醫材料…………………………………………9
2.1.3傳統支架製作技術…………………………………….16
2.2 快速原型技術…………………………………………………19
2.2.1快速原型加工原理………………………………………19
2.2.2利用快速原型技術做組織工程支架……………………20
第三章 材料合成改善與性質分析…………………………………...30
3.1 實驗藥品與設備………………………………………………30
3.1.1實驗藥品…………………………………………………30
3.1.2實驗設備簡介……………………………………………31
3.2 生醫材料合成與改善…………………………………………32
3.2.1 PCL-PEG-PCL 共聚物合成…………………………..32
3.2.2 PEG-HEMA光交聯劑合成……………………………34
3.3 材料核磁共振光譜分析………………………………………38
3.4 材料性質測試…………………………………………………48
3.4.1 材料溶解性質評估……………………………………48
3.4.2 二次溶解測試…………………………………………..49
第四章 系統簡介與機構改善…………………………………………52
4.1 生醫動態光罩快速成型系統…………………………………53
4.1.1先前系統架構……………………………………………53
4.1.2動態光罩產生器…………………………………………54
4.1.3動態光罩控制軟體…………………………………….57
4.2 生醫用動態光罩快速原型系統變更設計……………………59
4.2.1動態光罩產生器問題解決………………………………59
4.2.2機構的設計變更……………………………………….60
4.2.3光學鏡組配置……………………………………………62
4.2.4其他細部變更……………………………………………65
4.3 新系統相關檢測…………………………………………….67
4.3.1床台穩定度測試……………………………………….67
4.3.2系統成像測試……………………………………………67
第五章 3D多層支架製作與檢測……………………………………71
5.1多層支架設計與單層支架參數設立…………………………71
5.1.1多層支架設計……………………………………………71
5.1.2單層支架最佳曝光時間…………………………………73
5.1.3 單層支架孔洞與條寬的量測…………………………74
5.2 3D多孔性支架製作…………………………………………78
5.3 3D多層支架參數設定………………………………………80
5.3.1多層支架每層最佳成型時間………………………….80
5.3.2 遞減支架設計與製作…………………………………..84
5.3.3 組合式多層支架製作…………………………………88
第六章 結論與未來工作………………………………………………94
6.1結論……………………………………………………………94
6.2未來工作………………………………………………………..95
參考文獻………………………………………………………………97
【1】Dietmar W. Hutmacher, and Andres J. “Garcia, Scaffold-based bone engineering by using genetically modified cells,” Gene, Volume 347, p1-10, 2005.
【2】徐善慧 陳俊宇,“巧奪天工的人類智慧-組織工程” ,科學發展第356期,pp.4-9,2002年8月。
【3】張根源,“組織工程技術與應用”,化工科技與商情第33期,2002年6月。
【4】楊婷琪,“組織工程的重要元件-生物分子”,工研院經貿中心生醫組,2002年7月。
【5】廖俊仁,“組織工程用多孔隙骨架材料”,工研院生醫工程中心,2002年
【6】Shoufeng Yang, Kah-Fai Leong, Zhaohui DU, and Chee-Kai Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional Factors,” Tissue Engineering, Volume 7, p679-689, 2001.
【7】俞耀庭,生物醫用材料,初版,新文京,2004。
【8】工業技術研究院,“生醫材料與組織工程”。
【9】張根源,“生物吸收性PLGA材料合成與應用技術”,工業技術與資訊第112期,2001年2月。
【10】興技生物科技公司。
【11】蔡秉宏,“以聚殼醣合成光交聯性衍生物之探討”,國立成功大學化學工程研究所,碩士論文,1999。
【12】Dumitriu S, “Medical application of synthetic polymers,” Marcel Dekker, New York, Volume 725, 1994.

【13】Jin Ho Lee, Ae Kyung Go, Se Heang Oh, Ka Eul Lee, Soon Hong Yuk, “Tissue anti-adhesion potential of ibuprofen-loaded PLLA–PEG diblock copolymer films,” Biomaterials Volume 26, p671–678, 2005.
【14】J. Elisseeff, W. McIntosh, K. Anseth, S. Riley, P. Ragan, and R. Langer, “Photoencapsulation of chondrocytes in poly(ethylene oxide)-based Semi-interpenetrating networks,” Biomaterials, p164-171, 1999.
【15】Jennie Baier Leach, Kathryn A. Bivens, Charles W. Patrick, Jr., and Christine E. Schmidt, “Photocrosslinked Hyaluronic Acid Hydrogels: Natural, Biodegradable Tissue Engineering Scaffolds,” Biomaterials, p578-589, 2002.
【16】Hyung Woo Kim, Chung Wook Chung, Young Baek Kim, and Young Ha Rhee, “Preparation and hydrolytic degradation of Semi-interpenetrating networks of poly(3-hydroxyundecenoate) and poly( lactide-co-glycolide ),” International Journal of Biological Macromolecules, Volume 37, p221–226, 2005.
【17】Yoshinori Onuki, Masaru Hoshi, Hideaki Okabe, Mikito Fujikawa, Mariko Morishita, Kozo Takayama, “Formulation optimization of photocrosslinked polyacrylic acid modified with 2-hydroxyethyl methacrylate hydrogel as an adhesive for a dermatological patch,” Journal of Controlled Release Volume 108 p331–340, 2005.
【18】J.M. Taboas, R.D. Maddox, P.H. Krebsbach, and S.J. Hollister, “Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds,” Biomaterials, Volume 24, p181-194, 2003.

【19】K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,” Polymer, Volume 36, p837-842, 1995.
【20】Markus S. Widmer, Puneet K. Gupta, Lichun Lu, Rudolf K. Meszlenyi Gregory R.D. Evans, Keith Brandt, Tom Savel, Ali Gurlek, Charles W. Patrick Jr. and Antonios G. Mikos, “Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration,” Biomaterials, Volume 19. pp. 1945-1955, 1998.
【21】Linbo Wu, Dianying Jing, Jiandong Ding, “A room-temperature injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds,” Biomaterials Volume 27, p185–191, 2006.
【22】國立台灣科技大學雷射實驗室.
【23】Xpress 3DTM.
【24】Samar Jyoti Kalitaa, Susmita Bosea, Howard L. Hosickb and Bandyopadhyay, “Development of controlled porosity polymer-ceramic composite caffolds via fused deposition modeling,” Materials Science and Engineering C 23, pp. 611-620, 2003.
【25】H. Chim, D. W. Hutmacher, A. M. Chou, A. L. Oliveira, R. L. Reis, T. C. Lim, J. T Schantz: “A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering,” Oral Maxillofac. Surg.; Volume 35, p928–934, 2006.



【26】T. H. Ang, F.S.A. Sultana, D.W. Hutmacher, Y. S. Wong, J. Y. H. Fuh, X. M. Mo, H. T. Loh, E. Burdet and S.H. Teoh, “Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system,” Materials Science and Engineering Volume 20, pp.35-42, 2002.
【27】Mark J. Mondrinosa, Robert Dembzynskib, Lin Lub, Venkata K.C. Byrapogub, David M. Woottonb, Peter I. Lelkesa, Jack Zhoub, “Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering,” Biomaterials, Volume 27, p4399–4408, 2006.
【28】Saif Khalil, Wei Sun, “Biopolymer deposition for freeform fabrication of hydrogel tissue constructs,”Materials Science and Engineering C, Volume 27, p469–478, .2007.
【29】Major RP Techologies.
【30】K. H. Tan, C. K. Chua, K. F. Leong, C. M. Cheah, P. Cheang, M. S. Abu Bakar and S. W. Cha, “Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends,” Biomaterials, Volume 24, pp. 3115-3123, 2003.
【31】Hongyun Huang, Shunsuke Oizumi, Nobusiko Kojima, Toshiki Niino and Yasuyuki Sakai, “Avidin–biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network,” Biomaterials, Volume 28, pp. 3815-3823, 2007.
【32】C.X.F. Lam, X.M. Mo, S.H. Teoh, and D.W. Hutmacher, “Scaffold development using 3D printi ng with a starch-based polymer,” Materials Science and Engineering, Volume 20, p49-56, 2002.
【33】Min Lee, James C.Y. Dunn and Benjamin M. Wu, “Scaffold fabrication by indirect three-dimensional printing,” Biomaterials, Volume 26, pp. 4281-4289, 2005.
【34】Giovanni Vozzia, Christopher Flaimb, Arti Ahluwaliaa, and Sangeeta Bhatiab, “Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,” Biomaterials, Volume 24, p2533–2540, 2003.
【35】Kazuyoshi Itoga, Masayuki Yamato, Jun Kobayashi, Akihiko Kikuchi, Teruo Okano, “Cell micropatterning using photopolymerization with a liquid crystal device commercial projector,” Biomaterials Volume 25, P2047–2053, 2004.
【36】He Jiankang, Li Dichen, Liu Yaxiong, Yao Bo, Lu Bingheng, Lian Qin “Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures,” Polymer, Volume. 48, pp. 4578-4588, 2007.
【37】許貽玨,“光聚合生物可分解材料應用於RP技術製作組織工程支架性質之研究”,國立台灣科技大學機械工程研究所,碩士論文,民國96年。
【38】許端容,“具紫外光交聯性的聚胺酯二醇樹酯合成及應用於組織工程之研究”,國立清華大學材料科學與工程研究所,碩士論文,民國93年。
【39】陳茂陽,“光固化快速成型系統製作3D組織工程支架”,國立台灣科技大學機械工程系研究所,碩士論文,民國97年。
【40】TEXAS INSTRUMENTS.
【41】PLUS Vision Corp.


【42】A.G. Coopera,U, S. Kanga, J.W. Kietzmana, F.B. Prinza, J.L. Lombardib, L.E. Weissc, “Automated fabrication of complex molded parts using Mold Shape Deposition Manufacturing,” Materials and Design Volume 20, p83-89, 1990.
【43】許芳豪,“以快速原型技術研究組織工程支架孔徑大小對細胞成長之影響”,國立台灣科技大學機械工程系研究所,碩士論文,民國95年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔