(3.236.214.19) 您好!臺灣時間:2021/05/07 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:夏沙馬
研究生(外文):Selamat Walmanto Hia
論文名稱:TheEffectofRepeatedWeld-RepairsontheMicrostructureandTextureof304StainlessSteelWeld
論文名稱(外文):The Effect of Repeated Weld-Repairs on the Microstructure and Texture of 304 Stainless Steel Weld
指導教授:蔡顯榮蔡顯榮引用關係
指導教授(外文):Hsien-Lung Tsai
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:58
外文關鍵詞:CSL Grain BoundariesTextureEBSDHAZSMAWGTAWAISI 304
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The aim of this work was to study the effect of thermal cycles related with multiple weld repairs on the changes of fracture and texture characteristics in the HAZ of the AISI 304 stainless steel weld. The first pass of welding was conducted by GTAW and remained passes were completed by SMAW. After the final pass is finished, the weld metal was removed by grinding and the same procedure lasted for five times. Increasing numbers of weld-repairs had imposed little influence on the microstructures, texture, tensile strength and impact fracture of the HAZ. Texture orientation was determined by electron back scattering diffraction (EBSD), texture orientation in HAZ of fifth weldment still the same with the first weldment. Meanwhile ΣCSL grain boundary of HAZ first weldment was 91% and ΣCSL grain boundary of HAZ fifth weldment was 84%. The solidified microstructure with preferred orientation in the fusion zone of the weld was observed. The narrow HAZ of various welds was due to the inherent low input of SMAW process. The fracture appearance of various welds predominantly showed dimpled fracture for tensile and impact fracture specimens.
The aim of this work was to study the effect of thermal cycles related with multiple weld repairs on the changes of fracture and texture characteristics in the HAZ of the AISI 304 stainless steel weld. The first pass of welding was conducted by GTAW and remained passes were completed by SMAW. After the final pass is finished, the weld metal was removed by grinding and the same procedure lasted for five times. Increasing numbers of weld-repairs had imposed little influence on the microstructures, texture, tensile strength and impact fracture of the HAZ. Texture orientation was determined by electron back scattering diffraction (EBSD), texture orientation in HAZ of fifth weldment still the same with the first weldment. Meanwhile ΣCSL grain boundary of HAZ first weldment was 91% and ΣCSL grain boundary of HAZ fifth weldment was 84%. The solidified microstructure with preferred orientation in the fusion zone of the weld was observed. The narrow HAZ of various welds was due to the inherent low input of SMAW process. The fracture appearance of various welds predominantly showed dimpled fracture for tensile and impact fracture specimens.
Content

Abstract.................................................................................................................................i
Acknowledgement...............................................................................................................ii
Content...............................................................................................................................iii
Table Content.....................................................................................................................vi
Figure Content..................................................................................................................vii
Chapter 1 Introduction……………………………………………………..…….……...1
Chapter 2 Literature Review…………………………………………….……….……..2 2.1 Austenitic Stainless Steel…………………………….………………….....………….2 2.2 Type 304 Austenitic Stainless Steel……………………….…………...……..……….2 2.3 Welding Characteristics of Stainless Steels………………….………..…..….……….3 2.4 Welding Heat Input……………………………….……………………..…...………..3 2.5 The Effects of Welding Austenitic Stainless Steel Microstructure…………….….….4
2.5.1 Heat Affected Zone………………………………………………….…….....4
2.5.1.1 Grain Growth………………….…………..…………….………4
2.5.1.2 Ferrite Formation……………….……………………………….4
2.5.1.3 Carbide Precipitation……………….…………………………..5
2.5.1.4 Grain Boundary Liquation………………….…….…….………..5
2.5.2 Microstructure in Stainless Steel Welds…......................................................6
2.5.3 Solidification in the Fusion Zone……………….…………….…...……..….6
2.5.4 Ferrite Number……………………………………….……….….………….6


2.6 Characterization of Welding Austenitic Stainless Steel……………………………...7
2.6.1 Characteristic of Grain Boundary………………………………..………...7
2.6.2 Coincident Site Lattice (CSL)…..................................................................8
2.6.3 Grain Boundary Characteristic and Properties Stainless Steel
Weldment............ .........................................................................................8

Chapter 3 Experimental Procedure……………………………………..……..….…..14
3.1 Experimental Procedure……………………………………….………………....…..14
3.2 Material Preparation……………………………………...…………………………..14
3.3 Welding Procedure…...………………………………………………………...…….14
3.4 Re-Welding………………………………………………………………..….……...15
3.5 Ferrite Number Measurement………………………………………………..………15
3.6. Mechanical Tests…………………………………………………………...….…….15
3.6.1 Tensile Test……………………………………………………...…….……15
3.6.2 Impact Test……………………………………………….…….….……….16
3.6.3 Micro Hardness…………………………………………….….…...………16
3.7 Metallographic and Microscopy…………………………………..…….……..…….17
3.7.1 Optical Microscope (OM)……………………………………..……….…..17
3.7.2 Scanning Electron Microscope (SEM)………………………..…….……..17
3.7.3 Electron Back Scattered Diffraction (EBSD)……………......…….………17
3.7.3.1 Specimen Preparation………………………………..……….…....17
3.7.3.2 EBSD Phase Analysis...………………………………….....…..….18



Chapter 4 Result and Discussion....................................................................................26
4.1 Micro Hardness............................................................................................................26
4.2 Optical Microscope......................................................................................................26
4.2.1 Heat Affected Zone Microstructure..............................................................26
4.2.2 Fusion Zone Microstructure..........................................................................27
4.2.3 Ferrite Number..............................................................................................28
4.3 SEM Analysis..............................................................................................................28
4.3.1 Line Scan and EDS of Grain Boundary........................................................28
4.3.2 SEM of Tensile Fracture...............................................................................29
4.3.3 SEM of Impac Fracture................................................................................29
4.5 EBSD Orientation and Texture Analysis.....................................................................30
4.5.1 Texture Orientation.......................................................................................30
4.5.2 Coincident Site Lattice..................................................................................30

Cahpter 5 Conclusion......................................................................................................53
Future Study.......................................................................................................................54
References..........................................................................................................................55
[1] H.B. Cary, “Modern Welding Technology, Prentice Hall”, Englewood Cliffs, NJ, pp.419-426, (1979)
[2] M.O. LAI and H.S. Fong, ‘”Effect of Repeated Repairs on the Strength of Welded
Joints”, Welded Journal 29, (1989)
[3] Anonymous, “’Rules for Classification of Steel Ships, Material and Weldings’’, Det Norske Veritas, Part two, Chapter 3, (1983)
[4] BASF-YPC Company Limited,”Specification for Welding and Non Destructive Examination of Shop and Field Fabricated Piping, IPS project”, Nanjing, China, pp.12, (2002)
[5] Cr-Fe-Ni (Chromium-Iron-Nickel)." ASM Metals Handbook, 8th ed. Vol. 8
[6] Woollin, P. "Developments in Fusion Welding of Stainless Steels." Welding &
Metal Fabrication (Jan 1994):34-38.
[7] John C.Lippold and Damian J.Kotecki,” Welding Metallurgy and Weldability of Stainless Steels”. Willey Interscience (2005)
[8] Lancaster, J.F. Metallurgy of Welding. London: Alden Press Ltd., 1980.
[9] Suutala, N., T.Takalo, and T. Moisio. "The Relationship Between Solidification and Microstructure in Austenitic and Austenitic-Ferritic Stainless Steel Welds". Metallurgical Transactions 10A (April 1979): 512-514.
[10] Sindo Kow,” Welding Metallurgy” John Willey and Son, University of Wisconsin, 1987, p.145-146
[11] R. J. Castro and J. J. Cadenet in "Welding Metallurgy of stainless and heat resisting steels" ( Translated from French by R. C. Jain ), Cambridge University Press, 1975.
[12] P. Rodrigues, D. K. Bhattacharya and S. L. Mannan, "Delta ferrite in austenite
steel welds" Indian Institute of Welding seminar, Bombay, 1976.
[13] A.Mitra,S. Palit Sagar, P.K.De, D.K.Bhattacharya. “Evaluation of Magnetic Phases in Cold Worked and Weldments of AISI 304 Stainless Steel”, National Metallurgical Laboratory, Jamshedpur 831007, India.
[14] Humspreys, F.J, Hatherly, M.2004. “Recristallization and Related Annealing Phenomena”. Second Edition, Elsevier ltd., Oxford, UK, p 628, (2004)
[15] Reed-Hill, R.E, Abbaschian, R. “Physical Metallurgy principles”. Third Edition. PWS-Kent Publishing Company, Boston, USA, p 926, (1992)
[16] Juho Talonen, “Grain Boundaries Polycrystalline Materials: Characterization and General Properties”, laboratory of Engineering Material, Helsinki University of Technology
[17] Kokawa H, Shimada M, Michiuchi M, Z.J. Wang, Y.S. Sato, “Arrest of Weld in 304 Austenitic Stainless Steel by twin induced grain boundary engineering”, Acta Materialia, p 5401-5407, (2007)
[18] Kauris I, Gust W. “Fundamentals of grain and inter phase boundary diffusion”. Stuttgart, Germany: Ziegler Press,1988 [p. 275].
[19] Pumphrey PH. In: Chadwick GA, Smith DA, “Special high angle boundaries, grain boundary structure and properties”. London: Academic Press; 1976. p. 13-9.
[20] Xiaoying Fang, Kun Zhang , Hong Guo, Weiguo Wang , Bangxin Zhou, ‘’Twin-induced grain boundary engineering in 304 stainless steel’’, Materials Science and Engineering A. 2007 Elsevier B.V.
[21] Y.Zhom, KT. Aust, U.Erb, G.palumbo, “Effect of Grain Boundary Structure on Carbide Precipitation in 304L Stainless Steel”, Scripta Materialia, p.49-54, (2001)
[22] M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe, Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin induced grain boundary engineering, 2002 Acta Materialia Inc. Acta Materialia 50 2331–2341, (2002)
[23] M. Qian, J.C Lippold, “The Effect of Annealing Twin Generated Special Grain Boundaries on HAZ liquation Cracking of Nickel Base Super alloys”, Acta Materialia, p. 3351-3361, (2003)
[24] Sadahiro Tsurekawa, Nakamichi S, Watanabe T, “Correlation of Grain Boundary Connectivity with Grain Boundary Character Distribution in Austenitic Stainless Steel”, Acta Materialia, p 3617-3626, (2006)
[25] Xuan Huang Ha, Se Whan Jang, Wong Ho Bang, U-Sok Yun, Kyu Hwan Oh, “ Texture evolution in Weld region of SUS-304 Stainless Steel and TRIP Steel’’, Material Science Forum, Vol.408-412, pp 1377-1382, (2002).
[25] Peckner, D., and Berstein, I.M., “Handbook of Stainless Steel”, McGraw-Hill, New York. (1977)

[26]. Kelly Ferjutz, Joseph R. Davis, “Welding, Brazing, and Soldering”, ASM Handbook: Volume 6, (1983).
[27] William R.Oates, Alexander M.Saitta,. “Welding Hand Book”, Material and application part 2, AWS edition 8th, volume 4, Miami 1998 p. 263-305
[28] Cullity, B.D, Stock, SR, “Element of X-Ray Diffraction”, third edition, Practice Hall, Upper Saddle River, NJ, (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔