(3.238.130.97) 您好!臺灣時間:2021/05/15 14:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李龍育
研究生(外文):Long-yu Li
論文名稱:高功率LED汽車頭燈散熱設計之模擬與實驗整合研究
論文名稱(外文):An Integrated Numerical and Experimental Investigation on Thermal Management of LED Automotive Headlamp
指導教授:林顯群林顯群引用關係
指導教授(外文):Sheam-chyun Lin
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:258
中文關鍵詞:高功率LED汽車頭燈散熱設計數值模擬自然對流散熱模組
外文關鍵詞:High Power LEDAutomotive HeadlampThermal ManagementNumerical SimulationNatural Convectionthermal module
相關次數:
  • 被引用被引用:15
  • 點閱點閱:1251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
由於高功率LED有著許多優點,因此近年來被廣泛的應用在各種照明之光源,特別是在汽車頭燈上的應用,更是許多廠商的重點科技。但由於LED本身的發光效率及壽命,將會隨著晶片溫度的升高而快速遞減,再加上LED汽車頭燈應用時需面對的引擎室高溫對於散熱設計的負面影響;所以如何在此惡劣的散熱環境中有效降低晶片溫度,以提升LED發光效率及壽命,將是高功率LED於頭燈上應用的重要關鍵。有鑑於此本文將針對一組LED汽車頭燈實體模型進行散熱設計,以數值模擬分析設計出有效之散熱模組,並藉CNC製造出散熱模組實體以配合實驗做模擬之驗證;經此數值模擬結合實驗驗證的研究方法,設計出能有效解決LED汽車頭燈散熱問題之方案,以提升高功率LED實際應用於汽車頭燈之可行性。
本研究利用計算流體力學分析軟體,針對高功率LED汽車頭燈的原始模型進行模擬分析與散熱設計,首先以單一投射模組進行較佳化之散熱設計,經過完整參數分析後設計出對於投射模組有較佳效能之散熱模組;再以此投射模組之較佳散熱設計為參考,套入整組LED汽車頭燈進行散熱設計,並整合實驗驗證與模擬分析之結果,確認出適用於此原型且具良好散熱效果之整體散熱模組設計。為滿足實際應用環境之需求,接著加入後方高溫影響來探討原始模型散熱設計之缺失,經由統整模擬分析結果之後;本研究提出新型具有與外界通風之散熱流道的燈殼設計,並將散熱模組設置於此流道內提升散熱效能,以此新型之散熱方案來解決LED汽車頭燈之散熱問題。最後之研究結果顯示此新型散熱設計具有相當良好之散熱效能,與原始設計相比可降低約20℃之效果,且能使LED晶片在90℃之安全溫度下運作,並且具有良好之均溫性。總結來說本研究所建立之結合數值模擬、CNC實體製作與實驗驗證的研發設計系統,將能幫助解決LED應用於汽車頭燈時之散熱問題,並可作為後續LED汽車頭燈散熱研究乃至一般LED燈具之參考與應用。
Abstract
Nowadays the application of high power LED as lightning source becomes popular because of several breakthroughs in recent years. Regarding its applications in vehicles, LED offers many advantages over traditional light sources. Other than its high lighting efficacy (lumens/Watt), low electricity consumption, quick response, and long lifetime, LED is generally small in size. This provides the design of vehicle headlamp greater flexibility and technology feel. However, the application of high brightness LED on vehicle headlamp faces some bottlenecks to breakthrough. Obviously, heat removal from LED chip to maintain low LED junction temperature is the most challenging task among them. Moreover, the high environment temperature, generated from the car engine, severely downgrades the heat-removing capability of the thermal module for LED headlamp. This will directly influence the radiation efficiency, emitted light quality, and lifetime of LED. Hence, this investigation focuses on the understanding and design of heat-rejecting mechanisms inside the LED headlamp for automobile through a combined effort of simulation, CNC mockup fabrication, and experimental verification.
In this study, ARTC LED headlamp mockup, which is developed by the Automobile Research and Testing Center (ARTC) in Taiwan, is chosen to perform this thermal task. At first, the thermal design and a comprehensive parametric study are imposed on a single LED project module to enhance its thermal performance, which is verified via CFD and experimental means. Then, this effective LED module and a new headlamp casing with a ventilation channel are proposed and applied on the thermal design of the LED headlamp to solve the heat-dissipation problem. Consequently, the results indicate that the numerical calculations agree well with the experimental outcomes. Also, the LED junction temperatures are located within the range of 84.2~85.7 °C, which are clearly well below the safety limit and yielding a small 1.5 °C temperature deviation among LEDs. In conclusion, this rigorous and systematic design scheme for LED headlamps has been successfully established and utilized to generate and fabricate an efficient thermal module to lower the LED junction temperatures by nearly 20 °C, compared to the corresponding temperatures of the original design.
目錄
中文摘要 I
英文摘要 III
致謝 V
目錄 VI
圖索引 X
表索引 XVIII
符號索引 XX
第一章 緒論 1
1.1 前言 1
1.2 LED汽車頭燈發展背景 8
1.2.1 汽車頭燈的發展 11
1.2.2 LED汽車頭燈散熱問題 14
1.2.3 散熱器之應用分析 19
1.3 文獻回顧 21
1.3.1 垂直式散熱鰭片較佳化之設計 21
1.3.2 熱管應用 23
1.3.3 LED頭燈散熱設計 26
1.4 研究動機、方法與步驟 28
1.5 本文大綱 34
第二章 物理模式與理論分析 36
2.1 熱傳遞原理與熱阻定義 36
2.2 自然對流下之垂直式鰭片的散熱量估算 48
2.2.1 流體流動型態的判定 48
2.2.2 散熱鰭片性能探討 50
2.2.3 垂直鰭片之最佳間距 54
2.2.4 最大熱傳量估算 58
2.3 LED汽車頭燈光型結構 60
2.4 數值模型建構與網格劃分 68
2.4.1 數值模型建構 72
2.4.2 數值模型網格規劃 76
第三章 數值方法 82
3.1 統御方程式 84
3.2 數值計算方法 87
3.2.1 離散化(Discretization)方法 87
3.2.2 速度與壓力耦合的處理 91
3.2.3 求解流程 93
3.3 數值邊界條件與參數設定 96
3.4 網格獨立性測試 99
第四章 實驗規劃與設備 105
4.1 實驗環境與設備 107
4.1.1 恆溫環境量測系統 107
4.1.2 實車環境量測系統 110
4.1.3 溫度感測器與校正 112
4.2 實驗方法與步驟 113
4.2.1 LED實際發熱瓦數確認 115
4.2.2 數值模擬驗證 115
4.2.3 車燈周圍溫度量測 122
第五章 原始模型散熱設計之結果與討論 129
5.1 LED發熱瓦數之模擬與實驗驗證 130
5.2 投射模組散熱設計與改良 133
5.2.1 原始LED投射模組之熱流分析 133
5.2.2 原始LED投射模組之散熱設計 136
5.2.3 散熱模組之較佳化設計 142
5.2.4 數值模擬之實驗驗證 151
5.2.5 投射模組改良之散熱設計 156
5.3 LED汽車頭燈原始模型之散熱設計與分析 163
5.3.1 原始模型熱流分析 163
5.3.2 原始模型散熱設計與實驗驗證 169
5.3.3 考慮後方高溫之影響 191
第六章 LED汽車頭燈新型散熱設計 198
6.1 原始光型結構下之新型散熱設計 201
6.1.1 新型散熱設計之熱流場與效能分析 204
6.1.2 新型散熱設計之缺失探討 211
6.2 變更光型結構下之新型散熱設計 219
6.2.1 光型結構與散熱模組設計 220
6.2.2 變更光型結構之熱流場與散熱效能分析 225
6.2.3 參數變更方案之散熱效能分析 233
第七章 結論與建議 245
7.1 結論 245
7.2 建議 249
參考文獻 251
作者簡介 258
參考文獻
[1]F. M. Steranka, J. Bhat, D. Collins, and L. Cook, “High Power LED-Technology Status and Market Applications”, Phys. Stat. Sol. (a), Vol. 194, Issue. 2, pp. 380-388, 2002.
[2]王健源,劉如熹, “ 白光發光二極體製作技術 : 21世紀人類的新曙光”,全華科技圖書股份有限公司,2001年。
[3]D. A. Kirkpatrick, “Is Solid-State the Future of Lighting?”, Third International Conference on Solid State Lighting , Proceedings of SPIE, Vol. 5187, pp. 10-21, 2004.
[4]F. K. Yam and Z. Hassan, “Innovative Advances in LED Technology”, Microelectronics Journal, Vol. 36, pp. 129-137, 2005.
[5]趙仁成, “LED於照明之最新發展及散熱問題”,HB LED產品應用及散熱技術研討會,2007年。
[6]J. Petroski, “Thermal Challenges Facing New Generation Light Emitting Diodes(LEDs) for Lighting Applications”, Solid State Lighting II, Proceedings of the SPIE, Vol. 4776, pp. 215-222, 2002.
[7]Philips Lumileds Lighting, U.S. LLC., “Power Light Source LUXEON III Emitter”, Technical Datasheet DS45, www.lumileds.com
[8]Philips Lumileds Lighting, U.S. LLC., “Custom LUXEON Design Guide”, Application Brief AB12, www.lumileds.com
[9]陳智禮,揚鈞杰, “高功率LED的散熱處理”,工業材料雜誌,231期,pp. 139-145,2006年。
[10]許日滔, “車用LED頭燈組研發介紹”,財團法人車輛研究測試中心,車輛研測資訊,2005年。
[11]陳炳儒,胡鴻烈, “LED開創嶄新車用照明技術”,電光先鋒,4期,pp. 49-55,2006年。
[12]李碩重, “照明設計學”,全華科技圖書股份有限公司,2004年。
[13]OIDA, “Light Emitting Diodes (LEDs) for General Illumination”, An OIDA Technology Roadmap Updata, 2002.
[14]蘇衍如, “省電壽命長LED新世代先進車燈照明系統”, 經濟部技術處科技專案,技術尖兵雜誌,138期,2006年。
[15]Philips Lumileds Lighting, U.S. LLC., “Power Light Source LUXEON K2 with TFFC”, Technical Datasheet DS60, www.lumileds.com
[16]J. Z. Hu, L. Q. Yang, W. J. Hwang, and M. W. Shin, “Thermal and Mechanical Analysis of Delamination in GaN-based Light-Emitting Diode Packages”, Journal of Crystal Growth , Vol. 288, pp. 157-161, 2006.
[17]胡凡勳,許君國,周漢源,鄭健宏,陳至臣,“高功率LED之熱場模擬與封裝分析”,中華民國力學學會第二十九屆全國力學會議,2005年。
[18]黃歆斐,周榮華,”高亮度LED 封裝之熱分析”, 中華民國力學學會第三十屆全國力學會議,2006年。
[19]Thermacore International, Inc., “Advanced Cooling Solutions for a Changing World”, thermacoreADVrev14, www.thermacore.com
[20]C. Sharpe, “Cooling Systems for Electronic Equipment”, Design Engineering, pp. 99-100, 1986.
[21]B. Karimpourian and J. Mahmoudi, “Some Important Considerations in Heatsink Design”, Proceedings of 6th EuroSimE Conference, pp. 406-413, 2005.
[22]W. Elenbaas, “Heat dissipation of parallel plates by free convection”, Physica, vol. 9, pp. 1-28, 1942.
[23]A. Bar-Cohen and W. M. Rohsenow, “Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates”, ASME Journal of Heat Transfer, Vol. 106, pp. 116-123, 1984.
[24]A. T. Morrison, “Optimization of Heat Sink Fin Geometries for Heat Sinks in Natural Convection”, InterSociety Conference on Thermal Phenomena, pp. 145-148, 1992.
[25]A. Bejan, G. Tsatsaronis, and M. Moran, “Thermal Design and Optimization”, Wiley, pp. 241-256, 1996.
[26]G. Ledezma and A. Bejan, “Heat Sinks with Sloped Plate Fins in Natural and Forced Convection” International Journal of Heat and Mass Transfer, Vol. 39, pp. 1773-1783, 1996.
[27]J. E. Deverall and J. E. Kemme, ”Satellite Heat Pipe”, USAEC Report LA-3278, Contract W-7405-eng-36, Los Alamos Scientific Laboratory, University of California, 1970.
[28]M. Mochizuki, Y. Saito, K. Goto, and T. Nguyen, “Hinged Heat Pipe for Cooling Notebooks PCs”, IEEE SEMI-THERM Symposium, pp. 64-72, 1997.
[29]H. Xie, A. Ali, and R. Bhatia, “The Use of Heat Pipes in Personal Computers”, InterSociety Conference on Thermal Phenomena, pp. 442-446, 1998.
[30]M. Oomi, T. Fukumoto, and J. Sotani, “A Heat-Pipe System for a Desktop Computer”, Advances in Electronic Packaging, Vol. 2, pp. 1951-1955, 1999.
[31]賴衍村, “熱管散熱效益之研究”,國立成功大學工程科學研究所碩士論文,2000年。
[32]G. A. Asselman and D. B. Green, “Heat Pipes”, Phillips Technical Review, Vol. 16, pp. 169-186, 1973.
[33]H. Kozai, “The Effective Thermal Conductivity of Screen Wick”, Proc. 3rd Int. Heat Pipe Symposium, Tsukuba. Japan Association for Heat Pipe, 1988.
[34]J. C. Maxwell, “A Treatise on Electricity and Magnetism”, Vol. 1, 3rd Edn. OUP(1981), 1954.
[35]王暉雄, “熱管散熱模組效能之探討”,國立成功大學工程科學研究所碩士論文,2002年。
[36]J. Legierski, B. Wiecek, and A. D. Mey, “Measurements and Simulations of Transient Characteristics of Heat Pipes”, Microelectronics Reliability, Vol. 46, pp. 109-115, 2006.
[37]江志煌,蕭飛賓,“高功率LED模組應用於汽車適路性頭燈系統之熱傳分析與設計”,中華民國機械工程學會第二十三屆全國學術研討會論文集,2006年。
[38]Y. Lai and N. Cordero, “Thermal Management of Bright LEDs for Automotive Applications”, Proceedings of 7th EuroSimE Conference, pp. 390-394, 2006.
[39]Y. Lai, N. Cordero, F. Barthel, F. Tebbe, J. Kuhn, R. Apfelbeck, and D. Würtenberger, “Liquid Cooling of Bright LEDs for Automotive Applications”, Proceedings of 12th International Workshop on Thermal investigations of ICs, THERMINIC, pp. 80-85, 2006.
[40]李龍育,鄭光廷,林顯群,張光仁,顏則修,“高功率LED應用於機車頭燈上之散熱設計”,第十一屆車輛工程學術研討會,2006年。
[41]江松柏,“LED車頭燈模組之熱流模擬分析”,第十四屆全國計算流體力學學術研討會,2007年。
[42]K. Kikuchi, Y. hamashima, and Y. kobayashi, “An Approach to Predicting LED Junction Temperatures with Fluid and Thermal Analysis”, SAE Technical Paper Series, SAE World Congress, , 2005.
[43]K. Kikuchi, Y. hamashima, and K. Matsuoka, “Fluid and Thermal Analysis for LED Headlamp with Parametric Studies”, SAE Technical Paper Series, SAE World Congress, 2007.
[44]J. H. Lienhard Ⅳ and J. H. Lienhard Ⅴ, “A Heat Transfer Textbook”, 3rd Ed., Cambridge, Massachusetts, U.S.A., 2001.
[45]C. A. Latham, “Thermal Resistance of Interface Materials as a Function of Pressure”, Electronics-Cooling, Vol. 2, No. 2, pp. 35, 1996.
[46]S. Lee, “Calculating Spreading Resistance in Heat Sinks”, Electronics-Cooling, Vol. 4, No. 1, pp. 30-33, 1998.
[47]J. R. Culham, W. A. Khan, M. M. Yovanovich, and Y. S. Muzychka, “The Influence of Material Properties and Spreading Resistance in the Thermal Design of Plate Fin Heat Sinks”, ASME Journal of Electronic Packaging, Vol. 129, pp. 76-81, 2007.
[48]P. F. Incropera and P. D. Dewitt, “Fundamentals of Heat and Mass Transfer”, 4th Ed., John Wiley & Sons, New York, 1996.
[49]Y. A. Çengel, “Heat Transfer: A Practical Approach”, Second ed., McGraw-Hill, 2003.
[50]S. W. Churchill and H. H. S. Chu, “Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate”, Int. J. Heat Mass Transfer, Vol. 18, pp. 1323-1329, 1975.
[51]Philips Lumileds Lighting, U.S. LLC., “Power Light Source LUXEON III Star”,Technical Datasheet DS46, www.lumileds.com
[52]S. V. Patankar and D. B. Spalding, “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[53]Fluent 6.2 User’s Guide, Fluent Inc., 2005.
[54]T. Inaba, S. Watanabe, and Y. Yamada, “LED Headlamp Development for Mass Production”, SAE Technical Paper Series, SAE World Congress, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top