跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/17 02:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴士程
研究生(外文):Shih-chen Lai
論文名稱:桿件承受移動式質量塊之振動模擬與穩定性分析
論文名稱(外文):Vibration and Stability on a Beam with a Moving Mass
指導教授:黃世欽黃世欽引用關係
指導教授(外文):Shyh-chin Huang  
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:66
中文關鍵詞:移動質塊動態吸振器
外文關鍵詞:moving massdynamic vibration absorber
相關次數:
  • 被引用被引用:1
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討一桿件承受等速移動質量塊之振動模擬與穩定性分析,進而探討此類系統之動態吸振器(DVA)設計。文中首先建立系統模型,模型中將系統分解成二個次系統,一為水平桿件承受一移動力,另一為等速移動質塊承受一橫向移動力。利用漢米爾頓定理(Hamilton’s principle)推導出運動方程式,再運用模態展開法(modes expansion method)將方程式離散化,此為週期時變運動方程式。
在數值分析中,動態分析應用朗格庫塔數值法(Runge-Kutta Mathod)獲得系統之響應,續將求出的響應值利用FFT分析系統的響應頻率變化。吾人發現系統有一主要響應頻率,系統主要響應頻率在低速時會與當質塊固定在桿件中間時系統自然頻率接近,隨著質量塊越重而響應頻率分布範圍越大,隨著速度增加系統主要響應頻率也會改變。本文利用佛洛昆特理論(Floquet theory)觀察系統的不穩定範圍,其不穩定區隨質塊質量越重範圍越廣。文末在系統上加入一質量彈簧動態吸振器,透過吸振指標找出DVA最好的設定頻率,並探討參數對DVA設定頻率之影響,且整理得到參數對DVA設定頻率之函數。
This thesis deals with the vibration and the stability of a simply supported uniform beam subject to a moving mass at a constant velocity. The governing equations eventually become a periodic time-varying system. Furthermore, the design of dynamic vibration absorber on such a system is explored. In this study, Hamilton’s principle is first used to derive the equations of motion, then, the modes expansion method yields the discrete equation of motions.
In the numerical analysis, Runge-Kutta Method is used to find the dynamic responses and Fast Fourier Transform is used to find the response frequencies. The results show that there is a main response frequency. At low moving speeds, the main response frequency is close to the one as the moving mass fixed at the middle of the beam. As speed increases, the response frequency deviates from it. In the stability analysis, Floquet theory is used to observe the unstable area. The results show that increasing of moving mass also increases the unstable area.
In the end of the research, the problems of a dynamic vibration absorber tacked on-to the system are discussed. A power absorber index is defined to find the best setting frequency of the DVA. A dimensionless best setting frequency for DVA is then developed.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖表索引 VI
第一章 緒論 1
1.1文獻回顧 1
1.2 研究動機與目的 4
1.3 本文架構 5
第二章 系統運動方程式 9
2.1 建立系統模型 9
2.2 系統運動方程式推導 10
2.3系統運動方程式之離散化 13
2.4具DVA系統之運動方程式推導 15
第三章 振動分析 20
3.1系統響應-朗格庫塔數值方法 20
3.2 穩定性分析-佛洛昆特理論 23
3.3 簡例示範 28
第四章 具DVA系統之振動分析 41
4.1 吸振指標 41
4.2簡例示範及參數探討 42
第五章 結論與未來研究方向 60
5.1 結論 60
5.2 未來研究方向與建議 63
參考文獻 65
作者簡介 68
[1] Florence, A.L., 1965, “Traveling Force on a Timoshenko Beam,”Transaction of the ASME, Journal of Applied Mechanics, Vol. 32, pp.351-358.
[2] Olsson, M., 1991,“On the Fundamental Moving Load Problem,”Journal of Sound and Vibration, Vol. 145, pp.299-307.
[3] Pesterev, A.V., Yang B, Bergman L.A. and Tan CA., 2003,“Revisiting the moving force problem,”Journal of Sound and Vibration, Vol. 261, pp.299-307.
[4] Milomir, M. and Jay, C., 1969,“On the Response of Beam to an Arbitrary Number of Concentrated Moving Masses,”Journal of the Franklin Institute, Vol. 287, No.2.
[5] Cifuentes, A.O., 1989,“Dynamic response of a beam excited by a moving mass,”Finite Elements in Analysis and Design, 5, pp.237-246.
[6] Michaltsos, G., Sophianopoulos, D. and Kounadis, A.N., 1996,“The effect of a moving mass and other parameters on the dynamic response of a simply supported beam”Journal of Sound and Vibration, Vol. 191, pp.357-362.
[7] Ting, E.C., Genin, J. and Ginsberg, J.H., 1974,“A General Algorithm for Moving Mass Problems,”Journal of Sound and Vibration, Vol. 33(1), pp.49-58.
[8] Foda, M.A., Abduljabbar, Z., 1998,“A Dynamic Green Function Formulation for the Response of A Beam Structure to A Moving Mass,”Journal of Sound and Vibration, Vol. 210(3), pp.295-306.
[9] Lee U. ,1998,“Separation between the flexible structure and the moving mass sliding on it,”Journal of Sound and Vibration, Vol. 209, pp.867-877.
[10] Esmailzadeh, E. and Ghorashi, M., 1995,“Vibration Analysis of beams Traversed by Uniform Partially Distributed Moving Masses,”Journal of Sound and Vibration, Vol. 184(1), pp.9-17.
[11] Ichikawa, M., Miyakawa, Y. and Matsuda, A., 2000“Vibration Analysis of the Continuous Beam Subjected to a Moving Mass”Journal of Sound and Vibration, Vol. 230(3), pp.493-506.
[12] Lee, H. P., 1996“The Dynamic Response of a Timoshenko Beam Subject to a Moving Mass,”Journal of Sound and Vibration, Vol. 198, pp.249-256.
[13] Lee, H. P., 1996“Dynamic Response of a Beam no a Multiple Supports with a Moving Mass,”Structural Engineering and Mechanics, 4, No. 3, pp.303-212.
[14]Lee, H. P., 1998“Dynamic Response of a Timoshenko Beam no a Winkler Foundation Subjected to a Moving Mass,”Journal of Applied Acoustics, 55, No. 3, pp.203-215.
[15] Mackertich, S., 1996“The Response of an Elastically Supported Infinite Timoshenko Beam to a Moving Vibrating Mass”J. Acoust. Soc. Am., 101, No. 1, pp. 337-340.
[16] J. P. Den Hartog, Mechanical Vibration, 4th edition, McGraw-Hill, New York(1956).
[17]張接明,靜電驅動微結構體動態與穩定性分析,國立台灣科技大學碩士學位論文,(2002)
[18]陳銘賢,旋轉軸承受移動質量系統之動態穩定性分析,國立台灣科技大學碩士學位論文,(2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top