# 臺灣博碩士論文加值系統

(44.210.99.209) 您好！臺灣時間：2024/04/14 16:05

:::

### 詳目顯示

:

• 被引用:1
• 點閱:165
• 評分:
• 下載:0
• 書目收藏:0
 本文探討一桿件承受等速移動質量塊之振動模擬與穩定性分析，進而探討此類系統之動態吸振器(DVA)設計。文中首先建立系統模型，模型中將系統分解成二個次系統，一為水平桿件承受一移動力，另一為等速移動質塊承受一橫向移動力。利用漢米爾頓定理(Hamilton’s principle)推導出運動方程式，再運用模態展開法(modes expansion method)將方程式離散化，此為週期時變運動方程式。 在數值分析中，動態分析應用朗格庫塔數值法(Runge-Kutta Mathod)獲得系統之響應，續將求出的響應值利用FFT分析系統的響應頻率變化。吾人發現系統有一主要響應頻率，系統主要響應頻率在低速時會與當質塊固定在桿件中間時系統自然頻率接近，隨著質量塊越重而響應頻率分布範圍越大，隨著速度增加系統主要響應頻率也會改變。本文利用佛洛昆特理論(Floquet theory)觀察系統的不穩定範圍，其不穩定區隨質塊質量越重範圍越廣。文末在系統上加入一質量彈簧動態吸振器，透過吸振指標找出DVA最好的設定頻率，並探討參數對DVA設定頻率之影響，且整理得到參數對DVA設定頻率之函數。
 This thesis deals with the vibration and the stability of a simply supported uniform beam subject to a moving mass at a constant velocity. The governing equations eventually become a periodic time-varying system. Furthermore, the design of dynamic vibration absorber on such a system is explored. In this study, Hamilton’s principle is first used to derive the equations of motion, then, the modes expansion method yields the discrete equation of motions. In the numerical analysis, Runge-Kutta Method is used to find the dynamic responses and Fast Fourier Transform is used to find the response frequencies. The results show that there is a main response frequency. At low moving speeds, the main response frequency is close to the one as the moving mass fixed at the middle of the beam. As speed increases, the response frequency deviates from it. In the stability analysis, Floquet theory is used to observe the unstable area. The results show that increasing of moving mass also increases the unstable area. In the end of the research, the problems of a dynamic vibration absorber tacked on-to the system are discussed. A power absorber index is defined to find the best setting frequency of the DVA. A dimensionless best setting frequency for DVA is then developed.
 摘要 IABSTRACT II誌謝 III目錄 IV圖表索引 VI第一章 緒論 11.1文獻回顧 11.2 研究動機與目的 41.3 本文架構 5第二章 系統運動方程式 92.1 建立系統模型 92.2 系統運動方程式推導 102.3系統運動方程式之離散化 132.4具DVA系統之運動方程式推導 15第三章 振動分析 203.1系統響應－朗格庫塔數值方法 203.2 穩定性分析－佛洛昆特理論 233.3 簡例示範 28第四章 具DVA系統之振動分析 414.1 吸振指標 414.2簡例示範及參數探討 42第五章 結論與未來研究方向 605.1 結論 605.2 未來研究方向與建議 63參考文獻 65作者簡介 68
 [1] Florence, A.L., 1965, “Traveling Force on a Timoshenko Beam,”Transaction of the ASME, Journal of Applied Mechanics, Vol. 32, pp.351-358.[2] Olsson, M., 1991,“On the Fundamental Moving Load Problem,”Journal of Sound and Vibration, Vol. 145, pp.299-307.[3] Pesterev, A.V., Yang B, Bergman L.A. and Tan CA., 2003,“Revisiting the moving force problem,”Journal of Sound and Vibration, Vol. 261, pp.299-307.[4] Milomir, M. and Jay, C., 1969,“On the Response of Beam to an Arbitrary Number of Concentrated Moving Masses,”Journal of the Franklin Institute, Vol. 287, No.2.[5] Cifuentes, A.O., 1989,“Dynamic response of a beam excited by a moving mass,”Finite Elements in Analysis and Design, 5, pp.237-246.[6] Michaltsos, G., Sophianopoulos, D. and Kounadis, A.N., 1996,“The effect of a moving mass and other parameters on the dynamic response of a simply supported beam”Journal of Sound and Vibration, Vol. 191, pp.357-362.[7] Ting, E.C., Genin, J. and Ginsberg, J.H., 1974,“A General Algorithm for Moving Mass Problems,”Journal of Sound and Vibration, Vol. 33(1), pp.49-58.[8] Foda, M.A., Abduljabbar, Z., 1998,“A Dynamic Green Function Formulation for the Response of A Beam Structure to A Moving Mass,”Journal of Sound and Vibration, Vol. 210(3), pp.295-306.[9] Lee U. ,1998,“Separation between the flexible structure and the moving mass sliding on it,”Journal of Sound and Vibration, Vol. 209, pp.867-877.[10] Esmailzadeh, E. and Ghorashi, M., 1995,“Vibration Analysis of beams Traversed by Uniform Partially Distributed Moving Masses,”Journal of Sound and Vibration, Vol. 184(1), pp.9-17.[11] Ichikawa, M., Miyakawa, Y. and Matsuda, A., 2000“Vibration Analysis of the Continuous Beam Subjected to a Moving Mass”Journal of Sound and Vibration, Vol. 230(3), pp.493-506.[12] Lee, H. P., 1996“The Dynamic Response of a Timoshenko Beam Subject to a Moving Mass,”Journal of Sound and Vibration, Vol. 198, pp.249-256.[13] Lee, H. P., 1996“Dynamic Response of a Beam no a Multiple Supports with a Moving Mass,”Structural Engineering and Mechanics, 4, No. 3, pp.303-212.[14]Lee, H. P., 1998“Dynamic Response of a Timoshenko Beam no a Winkler Foundation Subjected to a Moving Mass,”Journal of Applied Acoustics, 55, No. 3, pp.203-215.[15] Mackertich, S., 1996“The Response of an Elastically Supported Infinite Timoshenko Beam to a Moving Vibrating Mass”J. Acoust. Soc. Am., 101, No. 1, pp. 337-340.[16] J. P. Den Hartog, Mechanical Vibration, 4th edition, McGraw-Hill, New York(1956).[17]張接明，靜電驅動微結構體動態與穩定性分析，國立台灣科技大學碩士學位論文，(2002)[18]陳銘賢，旋轉軸承受移動質量系統之動態穩定性分析，國立台灣科技大學碩士學位論文，(2003)
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 靜電驅動微結構體之動態與穩定性分析 2 撓性桿/滑車/翹翹板系統之振動控制 3 旋轉軸承受移動質量系統之動態穩定性分析

 無相關期刊

 1 雙懸臂樑吸振器之吸振與振能回收最佳化研究 2 廣義接納法理論之推導與應用於複雜結構之振動分析及最佳化 3 拉筋連接葉片對轉子系統振動響應之影響 4 具磁流變液隔振平台之模型建立與理論分析 5 具失調、失序或裂縫葉片之轉子系統耦合振動與穩定性分析 6 靜電驅動微結構體之動態與穩定性分析 7 週期振動吸振與獵能並置中吸振效能與獵能能力的互動影響分析 8 內嵌衝擊阻尼之動態吸振器分析研究 9 具磁流變液雙自由度引擎模型避振器之模型建立與理論分析 10 可自我調頻吸振器之研究 11 週期吸振器之減振與最佳化分析 12 自動調頻外伸壓電樑於振能回收之研究 13 週期扭振吸振器之設計與研究 14 具黏彈夾心雙懸臂樑式吸振器研究 15 雙懸臂樑吸振器之模型建立與效益探討

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室