跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 22:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐偉誌
研究生(外文):Wei-Chih Hsu
論文名稱:應用高斯過程模型於風速之回歸分析與隨機數值模擬
論文名稱(外文):Applications of Gaussian Process Models in Regression Analyses and Stochastic Simulations of Wind Speed Data
指導教授:卿建業卿建業引用關係陳瑞華陳瑞華引用關係
指導教授(外文):Jian-Ye ChingRwey-Hua Cherng
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:257
中文關鍵詞:高斯過程模型高斯回歸模型貝氏分析漸變型馬可夫鍊蒙地卡羅法風速內插風速模擬颱風危害度評估
外文關鍵詞:Gaussian process modelGaussian regression modelBayesian analysisTransitional Markov chain Monte Carlo methodWind speed interpolationWind speed simulationTyphoon hazard assessment
相關次數:
  • 被引用被引用:4
  • 點閱點閱:457
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
風速在風工程領域扮演著重要角色,使得風速的預測與模擬一直是該領域中的熱門主題。數種數值技巧(如自回歸移動平均模型、類神經網路等)被發展及應用於風速的相關研究。由於風速本身具有隨機性質,本文以一全機率模型–高斯過程模型來考量風速的不確定性,並由貝氏分析與漸變型馬可夫鍊蒙地卡羅法找出合適的高斯過程模型參數。
在本文中,我們由三種不同的數值案例分析(分別為風場風速回歸分析、風速時間序列分析、颱風期間地面風速變化分析),驗證高斯過程模型在風速回歸與模擬的可行性:在風場風速回歸分析中,我們採用主成份分析法降低空間之維度,並利用高斯過程模型配合常態轉換法進行分析,研究對象為數個氣象測站的月平均風速,高斯過程模型表現出良好的回歸能力(內插與外插結果與觀測資料有相似的變化趨勢);在風速時間序列分析中,我們採用高斯過程模型配合常態轉換法,研究對象為無劇烈氣候變化的測站風速,數值模擬結果顯示高斯過程模型模擬人造風速之統計特性(包括日最大風速平均值及標準偏差、風速超越機率及自相關性函數)與訓練及預測的風速統計特性相近;在颱風期間地面風速變化分析中,我們考慮颱風期間的數種因素(包括颱風與測站的相對距離、颱風與測站方向的夾角、颱風中心氣壓、颱風行進速度、颱風中心最大風速、颱風瞬間最大陣風與七級風半徑),研究對象為地面測站對應颱風警報單時刻的每小時平均風速,高斯過程模型表現出良好的回歸能力(獲得對訓練資料與測試資料一致之趨勢);除此之外,高斯過程模型的訓練結果有助使用者辨識輸入資料的重要性。根據案例的分析結果,可證明高斯過程模型能合理內插回歸風速與產生與訓練資料統計特性一致的人造風速。本文所提之方法應可作為建立耐風設計、風能評估或節能分析時所需之風速模型;在資料量不足、遺失或誤謬情況嚴重時,更能彰顯所提模型之效用。
Wind speed prediction and simulation are ardent topics all the time because of its stochastic properties and significance in wind engineering. Several numerical techniques, e.g. auto-regressive moving average model, artificial intelligence technique etc., were developed for solving the related problems in recent years. In this research, a probabilistic model, named Gaussian process model, is proposed to consider the uncertainties of wind speed. Moreover, Bayesian analysis and transitional Markov Chain Monte Carlo method are employed to find the model hyper-parameters. Three examples for different issues are presented to demonstrate its practicability and satisfactory interpolation performance. Furthermore, the results also show that the various statistic properties, including exceedance probability, data correlation and distribution, of simulated wind speed are consistent with them of the training wind speed data.
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 論文架構 2
參考文獻 4

第二章 文獻回顧 5
2.1 前言 5
2.2 機率密度函數模型 5
2.3 自回歸移動平均模型 8
2.4 類神經網路模型 10
參考文獻 13

第三章 風的性質 19
3.1 前言 19
3.2 大氣邊界層與平均風速的垂直分布模式介紹 19
3.3 平均風速與高度之關係 20
3.3.1 指數律下的風速剖面 20
3.3.2 對數律下的風速剖面 20
3.4 平均風速與地表粗糙度之關係 21
3.4.1 指數律下的平均風速剖面轉換 22
3.4.2 對數律下的平均風速剖面轉換 22
3.5 平均風速與平均時間之關係 23
3.6 大氣紊流與風場特性 23
參考文獻 25

第四章 貝氏分析 27
4.1 前言 27
4.2 貝氏分析與資料模型建立 27
4.2.1 貝氏分析的發展歷史 28
4.2.2 貝氏分析的規則 29
4.2.3 貝氏分析於資料模型建立時可能遭遇的問題 33
4.3 於模型選擇時之考量 33
4.3.1 複雜性的考量 34
4.3.2 參數化的考量 35
4.3.3 解釋性的考量 36
4.4 小結 36
參考文獻 38

第五章 高斯過程模型與回歸分析 45
5.1 前言 45
5.2 貝氏回歸 45
5.3 高斯過程模型 47
5.4 互變異函數 48
5.4.1 穩態的互變異函數 48
5.4.2 非穩態的互變異函數 52
5.4.3 互變異函數的產生 54
參考文獻 55

第六章 高斯過程模型參數之決定 58
6.1 前言 58
6.2 證據最大化近似法 58
6.3 拉普拉斯近似法 59
6.4 隨機取樣法 60
6.4.1 混合蒙地卡羅法 62
6.4.2 漸變型馬可夫鍊蒙地卡羅法 64
參考文獻 68

第七章 風場之風速回歸模型 73
7.1 前言 73
7.2 案例說明與資料一致化 74
7.3 主成份分析法 76
7.4 趨勢的移除與變異性的正規化 77
7.5 正常態轉換與逆常態轉換 78
7.6 模型設定 80
7.7 資料分析與討論 82
7.8 風能密度分析 86
7.9 小結 87
參考文獻 90

第八章 風速時間序列模型 110
8.1 前言 110
8.2 案例說明 111
8.3 案例八之一–無劇烈氣候變化測站風速案例分析 112
8.3.1 資料一致化與逐日最大風速之決定 112
8.3.2 趨勢的移除與變異性的正規化 113
8.3.3 正常態轉換與逆常態轉換 114
8.3.4 模型設定 116
8.3.5 模型訓練成果及人造風速資料之隨機數值模擬 117
8.3.6 觀測風速與人造風速之資料統計特性比較 119
8.4 案例八之二–無劇烈氣候變化測站的風速與風向案例分析 122
8.4.1 考慮多輸出變數相關性的聯合高斯過程模型 122
8.4.2 觀測風速與風向的資料前處理 125
8.4.3 模型設定 129
8.4.4 模型訓練成果及人造風速與風向之隨機數值模擬 131
8.4.5 觀測風速與風向和人造風速與風向之統計特性比較 134
8.5 小結 136
參考文獻 139

第九章 颱風時期地面風速變化模型 175
9.1 前言 175
9.2 案例說明與資料前處理 177
9.3 模型設定 179
9.4 資料分析與討論 180
9.5 颱風時期地面風速變化之合成模擬與分析 182
9.6 小結 186
參考文獻 189

第十章 結論與未來展望 211
10.1 結論 211
10.2 未來展望 212

符號索引 214

中英對照表 223

附錄A 基本高斯過程模型函數 A-1

附錄B 主成份分析法 B-1

附錄C 颱風行徑路線圖 C-1
[1-1] Jain, A., Srinivasan, M., and Hart, Gary C., "Performance based design extreme wind loads on a tall building," Structural Design of Tall Buildings, 10(1), 9–26 (2001).
[1-2] Brown, B.G., Kats, R.W., and Murphy, A.H., "Time series models to simulate and forecast wind speed and wind power," Journal of Climate and Applied Meteorology, 23, 1184–1195 (1984).
[1-3] 林憲德、張思源,「建築空調耗能分析用平均氣象年資料之研究」,國科會計畫編號NSC75-0410-E006-3,3,臺南 (1987)。
[1-4] Nfaoui, H., Buret, J., and Sayigh, A.A.M., "Stochastic simulation of hourly average wind speed sequences in Tangiers(Morocco)," Solar Energy, 56(3), 301–314 (1996).
[1-5] Ang, A.H.S., and Tang, W.H., Probability Concepts in Engineering Planning and Design, Vol. I:Basic Principles, John Wiley & Sons (1984).
[1-6] Gelman, A., Carlin, J., Stern, H., and Rubin, D., Bayesian Data Analysis. Chapman & Hall, London (1995).
[1-7] Ching, J., and Chen, Y.C., "Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging," Journal of Engineering Mechanics, 133 (7), 816–832 (2007).
[2-1] Simiu, E., and Scanlan, R.H., Wind Effects on Structures: Fundamentals and Applications to Design, 3rd Edition, New York, John Wiley & Sons (1996).
[2-2] Sherlock, R.H., "Analyzing winds for frequency and duration on atmospheric pollution," Meteorological Monograph American Meteorological Society, 4, 42–49 (1951).
[2-3] Chou, K.C., and Cortis, R.B, "Simulation of hourly wind speed and array wind power," Solar Energy, 26,199–212 (1981).
[2-4] Corotis, R.B., Sigl, A.B., and Klein J., "Probability models of wind velocity magnitude and persistence," Solar Energy, 20, 483–493 (1978).
[2-5] Conradsen, K, Nielsen, L.B., and Prahm, L.P., "Review of Weibull statistics for estimation of wind speed distributions," Journal of Climate and Applied Meteorology, 23, 1173–1183 (1984).
[2-6] Bardsley, W.E., "Note on the inverse Gaussian distribution for wind energy application," Journal of Applied Meteorology, 19, 1126–1130 (1980).
[2-7] Luna, R.E., and Church, A.W., "Estimation of long-term concentration using a universal wind speed distribution," Journal of Applied Meteorology, 13, 910–916 (1974).
[2-8] Hennesey, J.P., "A comparison of Weibull and Rayleigh distributions for estimating wind power potential," Wind Engineering, 3(2), 156–164 (1978).
[2-9] Justus, C.G., Hargraves, W.R., and Yalcin, A., "Nation-wide assessment of potential output from wind powered generators," Journal of Applied Meteorology, 15, 673–678 (1976).
[2-10] Stewart, D.A., and Essenwanger, O.M., "Frequency distribution of wind speed near the surface," Journal Applied Meteorology, 17, 1633–1642 (1978).
[2-11] Tackle, E.S., and Brown, J.M., "Note on the use of Weibull statistics to characterize wind speed data," Journal Applied Meteorology, 17, 556–559 (1978).
[2-12] Carlin, J., and Haslett, J., "The probability distribution of wind power from a dispersed array of wind turbine generators," Journal Applied Meteorology, 21, 303–313 (1982).
[2-13] Poggi, P., Muselli, M., Notton, G., Cristofari, C., and Louche A., "Forecasting and simulating wind speed in Corsica by using an autoregressive model, " Engery Conversion and Management, 44, 3177–3196 (2003).
[2-14] Grigoriu, M., "Estimates of design wind from short records," ASCE Journal of the Structural Division, 108(ST5), 1034–1048 (1982).
[2-15] Garcia, A., Torres, J.L., Prieto, E., and De Francisco, A., "Fitting wind speed distributions: a case study," Solar Energy, 62(2), 139–144 (1998).
[2-16] Van Der Auwera, L., De Meyer, F., and Malet, L.M., "The use of Weibull three-parameter model for estimating mean wind power densities," Journal Applied Meteorology, 19, 819–825 (1980).
[2-17] Kaminsky, F.C., "Four probabilities densities (Log-Normal, Gamma, Weibull and Rayleigh) and their application to modeling average hourly wind speed," in International Solar Energy Society, Annual Meeting, Orlando, 19–6~19–10 (1977).
[2-18] Justus, C.G., Hargraves, W.R., Mikhail, A., and Graver, D., "Methods for estimation wind speed frequency distributions," Journal Applied Meteorology, 17, 350–353 (1978).
[2-19] Cliff, W.V., "The effect of generalized wind characteristics on annual wind power estimates from wind turbine generators," Batelle Pacific Northwest Labs Report PNL-2436 (1977).
[2-20] 高士哲,「人造混合風速歷時在極值風速上之應用」,碩士論文,國立台灣科技大學營建工程系,臺北 (2004)
[2-21] Raza, S.M., and Jafri, Y.Z., "Wind energy estimation at Quetta," In: Veziroglu, TN (editor). Proc 8 Int Symp Alternate Energy Sources, University of Miami, 14–16 (1987).
[2-22] Brown, B.G., Katz, R.W., Murphy, A.A., and Peterson, B.A., "Times series models for simulating hourly wind power," Division of Power Management, Bonneville Power Administration, Portland, Contract DE-AC-81BP25593, Report No. BPA 82-10, 52 (1982).
[2-23] Morgan, V.T., "Statistical distributions of wind parameters at Sydney," Australia, Renew Energy, 6(1), 39–47 (1995).
[2-24] Stevens, M.J.M., and Smulders, P.T., "The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes," Wind Engineering, 3(2), 132–145 (1979).
[2-25] Box, G.E.P., and Jenkins, G.M., "Time series analysis, forecasting and control," San Francisco, Holden-Day (1976).
[2-26] Katz, P.W., and Skaggs, R.H., "On the use of autoregressive moving average process to model meteorological time series," Monthly Weather Review, 109, 479–484 (1981).
[2-27] Delleur, J.M., and Kavvas, M.L., "Stochastic models for monthly rainfall forecasting and synthetic generation," Journal of Climate and Applied Meteorology, 17, 1528–1536 (1978).
[2-28] Carlson, R.F., Mac Cormick, A.J.A, and Watts, D.G., "Application of linear random models to four annual stream-flow series," Water Resources Research, 6, 1070–1078 (1970).
[2-29] Davis, J.M., and Rappaport, P.N., "The use of time series analysis techniques in forecasting meteorological drought," Monthly Weather Review, 102, 176–180 (1974).
[2-30] Blanchard, M., and Desrochers, G., "Generation of autocorrelated wind speeds for energy conversion system studies," Solar Energy, 33(6), 571–579 (1984).
[2-31] Geerts, H.M., "Short range prediction of wind speeds: a system-theoretic approach," In: Proceedings of European Wind Energy Conference, Hamburg, Germany, 594–599 (1984).
[2-32] Balouktsis, A., Tsanakas, D., and Vachtsevanos, G., "Stochastic simulation of hourly and daily average wind speed sequences," Wind Engineering, 10(1), 1–11 (1986).
[2-33] Daniel, A.R., and Chen, A.A., "Stochastic simulation and forecasting of hourly average wind speed sequences in Jamaica," Solar Energy, 46 (1), 1–11 (1991).
[2-34] Giorsetto, P., and Utsurogi, K., "Development of a new procedure for reliability modeling of wind turbine generators," Winter Meeting WM 249-1, New York (1982).
[2-35] Kamal L, and Jafri YZ., "Time series model to simulate and forecast hourly averaged wind speed in Quetta, Pakistan," Solar Energy, 61(1), 23–32 (1997).
[2-36] Chowdhury, B.H., "Short term prediction of solar irradiance using time series analysis," Energy Sources, 12, 199–219 (1990).
[2-37] Huang, Z., and Chalabi, Z.S., "Use of time analysis to model and forecast wind speed," Journal of Wind Engineering and Industrial Aerodynamics, 56, 311–312 (1995).
[2-38] Kaminsky, F.C., Kirchhoff, R.H., and Syu, C.Y., "A stastistical technique for generating missing data from wind speed time series," In: Proceedings of the AWEA Annual Conference , 211–216 (1990).
[2-39] Gordon, J.M., and Reddy, T.A., "Time daily analysis of daily horizontal solar radiation," Solar Energy, 41, 215–226 (1988).
[2-40] Bossanyi, E.A., Whittle, B.E., Dunn, P.D., Lipman, N.H., and Musgrove, P.J., "Wind characteristics and the output of wind turbines," In: Proceeding of the First British Wind Energy Association Workshop, Multiscience, 157–164 (1979).
[2-41] Boulay, Y., "Promenade dans un vaste champ ," Solaires,61/62, 9–13 (1990).
[2-42] 陳瑞華、卿建業、高士哲、徐偉誌,「以隱藏式馬可夫鍊分析並模擬風速資料」,中國土木水利工程學刊 (已接受)
[2-43] Cheng, E.S., Cheng, S. and Mulgew, B., "Gradient radial basis function network for nonlinear and nonstationary time series prediction," IEEE transactions on Neural Networks, 7(1), 190–194 (1996).
[2-44] Kaminski, W., and Strumillo, P., "Kernel orthonormalization in radial basis function neural networks," IEEE Transactions on Neural Networks, 8(5), 1177–1183 (1997).
[2-45] Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, Englewood Cliffs, NJ (1999).
[2-46] Sfetsos, A., "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renewable Energy, 21, 23–35 (2000).
[2-47] Mohandes, M.A., Rehman, S., and Halawani, T.O., "A neural networks approach for wind speed prediction," Renewable Energy, 13(3), 345–354 (1998).
[2-48] Bilgili, M., Sahin, B., and Yasar, A., "Application of artificial neural networks for the wind speed prediction of target station using reference stations data," Renewable Energy, 32, 2350–2360 (2007).
[2-49] , A., "Artificial neural network approach to spatial estimation of wind velocity data," Energy Conversion and Management, 47, 395–406 (2006).
[2-50] 陳瑞華、徐偉誌,「改良式支撐向量回歸模型於風速之預測」,中國土木水利工程學刊,第20卷,第2期,第217–228頁 (2008)
[3-1] Owen, P.R., "Buildings in the wind," Journal of the Royal Meteorological Society, 97(414), 396–413 (1971).
[3-2] Tenekes, H., "The logarithmic wind profile," Journal of the Atmospheric Science, 30(2), 234–238, 1973.
[3-3] 內政部營建署,「建築物耐風設計規範及解說」 (2007)
[3-4] Deaves, D.M., "Computations of wind flow over changes in surface roughness," Journal of Wind Engineering and Industrial Aerodynamics, 7, 65–94 (1981).
[3-5] 朱佳仁,「風工程概論」,科技圖書公司 (2006)
[4-1] Bernoulli, J., Ars Conjectandi, Thurnisius, Basel (1713).
[4-2] Bayes, T., "An essay towards solving a problem in the doctrine of chances," Philosophical Transactions of the Royal Society London, 53, 370–418 (1763).
[4-3] Laplace, P.S., , Courcier Imprimeur, Paris (1812).
[4-4] Jeffreys, H., Theory of Probability, Oxford University Press, 3rd edition, Harold, New York (1961).
[4-5] Cox, R.T., "Probability, frequency and reasonable expectation," American Journal of Physics, 14, 1–13 (1946).
[4-6] Box, G.E.P., and Tiao, G. C., Bayesian Inference in Statistical Analysis, New York, John Wiley and Sons (1973).
[4-7] Gull, S.F., "Bayesian inductive inference and maximum entropy," In Maximum Entropy and Bayesian Methods in Science and Engineering, vol.1: Foundations, ed. by Erickson, G.J., and Smith, C.R., Dordrecht the Netherlands, Kluwer Academic Publishers 1988.
[4-8] MacKay, D.J.C., "Bayesian interpolation," Neural Computation, 4(3), 415–447 (1992).
[4-9] Neal, R.M., Bayesian Learning for Neural Networks, Lecture Notes in Statistics No. 118, New York, Springer-Verlag (1996).
[4-10] Waterhouse, S.R., and Robinson, A.J., "Non-linear prediction of acoustic vectors using hierarchical mixtures of experts," Neural Information Processing Systems 7 (1995)
[4-11] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, San Mateo, Morgan Kaufmann (1988).
[4-12] Mendel, J.M., "Fuzzy logic systems for engineering: A tutorial," Proceedings of the IEEE, 83, 1293(1994).
[4-13] Young, A.S. "A Bayesian approach to prediction using polynomials," Biometrika, 64, 309–317 (1977).
[4-14] Neal, R.M., "Bayesian mixture modeling, "Maximum Entropy and Bayesian Methods, Seattle 1991, ed. by Smith, C., Erickson, G., and Neudorfer, P., 197–211, Dordrecht Kluwer (1992)
[4-15] Williams, C.K.I., and Rasmussen, C.E., "Gaussian process for regression," Neural Information Processing Systems 8, Cambridge, MIT Press, 111–116 (1996).
[4-16] Barber, D., Williams, C.K.I., "Gaussian process for Bayesian classification via hybrid Monte Carlo," Neural Information Processing Systems 9, Cambridge, MIT Press (1997).
[4-18] Neal, R.M., "Monte Carlo implementation of Gaussian process models for Bayesian regression and classification," Technical Report CRG-TR-97-2, Department of Computer Science, University of Toronto (1997).
[5-1] Bochner, S., Harmonic Analysis and The Theory of Probability, Berkeley (1979.)
[5-2] Gibbs, M.N., "Bayesian Gaussian Processes for Regression and Classification," PhD thesis, University of Cambridge (1997).
[6-1] MacKay, D.J.C., Hyperparameters: optimize, or integrate out?, In Maximum Entropy and Bayesian Methods, Santa Barbara 1993, ed. by G. Heidbreder, 43-60, Dordrecht. Kluwer (1996).
[6-2] Duane, S., Kennedy, A.D., Pendleton, B.J., and Roweth, D., "Hybrid Monte Carlo," Physics Letters B, 216-222 (1987).
[6-3] Rasmussen, C.E., "Evaluation of Gaussian processes and other methods for non linear regression, " University of Toronto dissertation (1996).
[6-4] Beck, J.L. and Katafygiotis, L.S., "Updating models and their uncertainties – Bayesian statistical framework," Journal of Engineering Mechanics, 124(4), 455-461 (1998).
[6-5] Katafygiotis, L. S., Papadimitriou, C. and Lam, H.F., "A probabilistic approach to structural model updating," Soil Dynamics and Earthquake Engineering, 17, 495-507 (1998).
[6-6] Beck, J.L. and Au, S.K., "Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation," Journal of Engineering Mechanics, 128(4), 380-391 (2002).
[6-7] Katafygiotis, L.S. and Beck, J.L., "Updating models and their uncertainties II: model identifiability," Journal of Engineering Mechanics, 124(4), 463-467 (1998).
[6-8] Beck, J.L. and Yuen, K.V., "Model selection using response measurements: Bayesian probabilistic approach," Journal of Engineering Mechanics, 130(2), 192-203 (2004).
[6-9] Hoeting, J.A., Madigan, D., Raftery, A.E. and Volinsky, C.T., "Bayesian model averaging: a tutorial," Statistical Science, 14(4), 382-417 (1999).
[7-1] 經濟部能源委員會,「台灣與澎湖間舖設海底輸電線路及應用再生能源以解決澎湖用電成長之可行性計畫執行報告」,工業技術研究院 (2003)。
[7-2] 台灣電力公司,「再生能源」,電力圖書館,http://www.taipower.com.tw/.
[7-3] 江榮城,「國內風力發電運轉經驗」,經濟部工業局,工安環保報導28期 (2005)。
[7-4] Beresford, N.A., Crout, N.M.J., Mayes, R.W., Howard, B.J., Lamb, C.S., Mann, J., "Wind field simulation," Probabilistic Engineering Mechanics, 13(4), 269–282 (1998).
[7-5] Brown, B.G., Katz, R.W., and Murphy, A.H., "Time series models to simulate and forecast wind speed and wind power," Journal of Climate and Applied Meteorology, 23, 1184–1195 (1984).
[7-6] ztopal, A. , "Artificial neural network approach to spatial estimation of wind velocity data," Energy Conversion and Management, 47(4), 395–406 (2006).
[7-7] Kalogirou, S., Neocleous, C., Michaelides, S. and Schizas, C., "Artificial neural networks for the generation of isohyets by considering land configuration," Proceedings of the Engineering Applications of Neural Networks (EANN’98) Conference, Gibraltar, 383-389 (1998).
[7-8] Kalogirou, S.A., Neocleous, C.C, and Schizas, C.N., "Artificial neural networks in modeling the starting-up of a solar steam generation plant, " Applied Energy, 60(2), 89-100 (1998).
[7-9] Mohandes, A.M., Rehman, S, and Halawani, T.O., "A neural network approach for wind speed prediction," Renewable Energy, 13(3), 345–354 (1998).
[7-10] 鄭啟明,「建築物風力規範之研究」,內政部建築研究所研究計畫成果報告(2002)
[7-11] Balkema, A.A., and de Haan, L., "Residual life time at great age," Annals of Probability, 2, 792-804 (1974).
[8-1] Williams, C.K., and Rasmussen, C.E., "Gaussian processes for regression," In Advances in Neural Information Processing Systems, D. Touretzsky, M. Mozer, and M. Hasselmo,
Eds., vol. 8 (1996).
[8-2] Cressie, N., "Statistics for Spatial Data," Wiley (1993).
[8-3] Gibbs, M., and MacKay, D.J., "Efficient implementation of Gaussian processes," http://www.inference.phy.cam.ac.uk/mackay/abstracts/gpros.html (1996).
[8-4] Abrahamsen, P., "A review of Gaussian random fields and correlation functions," Technical Report 917, Norwegian Computing Center, Box 114, Blindern, N-0314 Oslo, Norway (1997).
[8-5] MacKay, D.J. "Information theory, inference, and learning algorithms," Cambridge University Press (2003).
[8-6] Boyle, P.K., and Frean, M.R., "Multiple output Gaussian process regression," Technical Report, CS-TR-05-2, http://www.mcs.vuw.ac.nz/~marcus/manuscripts/ CS-TR-05-2.pdf (2005).
[9-1] 中央氣象局全球資訊網,http://www.cwb.gov.tw/
[9-2] Myers, V.A., "Characteristics of United States hurricanes pertinent to levee design for Lake Okeechobee, Florida," Hydrometeorological Report No. 32, U.S. Department of Commerce, Weather Bureau, Washington, DC. 106 (1954).
[9-3] Miller, B.I., "The three-dimensional wind structure around a tropical cyclone," National Hurricane Research Project Report No. 15, Weather Bureau, U.S. Department of Commerce, Miami, FL (1958).
[9-4] Krueger, D.W., "A relation between the mass circulation through hurricanes and their intensity, " Bulletin of the American Meteorological Society, 40, 182–189(1959).
[9-5] Graham, H. E., and Hudson, G.N., "Surface winds near the center of hurricanes (and other cyclones)," NHRP Reporter, 39, 200 (1960)
[9-6] Shea, D.J., and Gray, W.M., "The hurricane’s inner core region: I. symmetric and asymmetric structure," Journal of the Atmospheric Science, 30, 1544–1564 (1973).
[9-7] Powell, M.D., "The transition of the hurricane Frederic boundary–layer wind field from the open gulf of Mexico to landfall," Monthly Weather Review, 110, 1912–1932 (1982).
[9-8] Shapiro, L.J., "The asymmetric boundary layer flow under a translating hurricane," Journal of the Atmospheric Science, 40, 1984–1998 (1983).
[9-9] Pan, K., Singhal, A., and Zadeh, M., "A parametric wind field model for hurricane risk assessment," A.M. Asce, 11, http://citeseer.ist.psu.edu/405499.html (1999)
[9-10] Ooyama, K., "Numerical simulation of the life cycle of tropical cyclones," Journal of Atmospheric Sciences, 26, 3–40 (1969).
[9-11] Depperman, R.C., "Notes on the origin and structures of Philippine typhoons," Bulletin of the American Meteorological Society, 28, 399–404 (1947).
[9-12] Schloemer, R.W. "Analysis and synthesis of hurricane wind patterns over Lake Okeechobee," Florida. Hydromet. Rep., 31, Deptartment of Commerce, Washington D.C., Mar, 49 (1954).
[9-13]Jelesnianski, C.P., "A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf," Monthly Weather Review, 93(6), 343–358 (1965).
[9-14] Wang, C.Y.G., "Sea-level pressure profile and gusts within a typhoon circulation," Monthly Weather Review, 106, 954–960 (1978).
[9-15] Li, H.W., "Numerical prediction of typhoon surges along the coast area of Taiwan strait," Acta Oceanographica Taiwanca, Science reports of the National Taiwan University, 10, 50–66 (1979).
[9-16] Holland, G.J., "An analytic model of the wind and pressure profiles in hurricanes," Monthly Weather Review, 108, 1212–1218 (1980).
[9-17] 陳孔沫,「一種計算颱風風場的方法」,熱帶海洋,13(2),41–48 (1994).
[9-18] Lai, C.C.A., "Probabilistic forecast of tropical cyclone-generated storm surge with a dynamic-statistical approach," MTS Journal, 26(2), 33–42 (1995)
[9-19] 徐月娟,「彌陀海域潮汐及暴潮之數值研究」,行政院國家科學委員會專題研究計畫成果報告 (1995)
[9-20] 徐月娟,「彌陀海域潮汐及暴潮之數值模擬」,行政院國家科學委員會專題研究計畫成果報告 (1996)
[9-21] Jakobsen, F. and H. Madsen, "Comparison and further development of parametric tropical cyclone models for storm surge modelling," Journal of Wind Engineering and Industrial Aerodynamics, 92, 375–391 (2004).
[9-22] 江朕榮,「以數值模式探討颱風湧昇流之時空變化」,碩士論文,國立中山大學海洋環境及工程學系 (2004)。
[9-23] 大地坐標轉換測試程式,國立成功大學水工試驗所資料庫及地理資訊組,http://gis.thl.ncku.edu.tw/coordtrans/coordtrans.aspx
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top