跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 18:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏銘佐
研究生(外文):Ming-Tso Yen
論文名稱:校準阻抗因子時之模型選定
論文名稱(外文):Model Selection Issue in Calibrating Reliability-based Resistance FactorsBased on Geotechnical In-situ Test Data
指導教授:卿建業卿建業引用關係
指導教授(外文):Jianye Ching
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:143
中文關鍵詞:基樁承載力可靠度模型選定
外文關鍵詞:pilebearing capacityreliabilitymodel selection
相關次數:
  • 被引用被引用:2
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,基於載重與阻抗因子(load factor and resistance factor design;LRFD)的可靠度設計法已漸漸取代舊有的安全係數法。校準阻抗因子的常用方式,是根據現地實驗得到的實際承載力,除以用土層參數預估出來的承載力,以得到承載比(實際承載力/預估承載力)的資料,根據這些承載比的平均值及變異係數,即可以得到阻抗因子與設計破壞機率(或可靠度)的關係。很明顯的,在這過程當中,若選用不同的預測模型,所校準出來的阻抗因子是不一樣的,那麼我們應該用哪一個預測模型來校準阻抗因子?原則上這是ㄧ個模型選定的問題,一般的作法是認為承載比變異係數最小的預測模型,就是最好的模型。這個研究根據一組試樁的資料庫的分析結果,與上述說法有些許違背:我們發現針對這個資料庫而言,承載比變異係數最小的預測模型,並非真的是最好的模型,因此我們提出一套嚴謹的機率分析方法,以選出較佳的模型。
This paper addresses the model selection issue often encountered in the process of calibrating reliability-based resistance factors. As well known, a predictive model must be assumed for the purpose of calibrating resistance factors based on in-situ test data. A critical question is raised by this research: which predictive model should we choose? What type of probability distribution model should we pick to model the model uncertainties? Those are important questions to ask because the calibration results seriously depend on the assumed predictive and probabilistic models. A full probabilistic framework is proposed in this research to resolve the model selection issue as well as to calibrate the resistance factors. Two examples of real dataset are used to illustrate the model selection issue and to demonstrate the use of the proposed methods. The proposed methods lead to reasonable conclusions and may contribute code calibration based on in-situ test data.
中文摘要................................I
ABSTRACT ..............................III
致謝....................................V
目錄...................................VI
符號表................................XIV
第一章緒論..............................1
1-1研究動機.............................1
1-2研究目的.............................1
1-3研究方法.............................2
1.4論文架構.............................3
第二章文獻回顧..........................4
2-1基樁極限垂直承載力之行為與機制.......4
2-2影響基樁阻抗之要素...................5
2-3基樁載重試驗與詮釋...................5
2-4可靠度於大地工程之應用..............10
2-4-1何為不確定性(uncertainty)?........10
2-4-2可靠度與極限狀態設計..............12
2-4-3可靠度分析法......................13
2-5貝氏分析法..........................16
2-5-1模型選定問題......................19
2-5-2模型平均..........................20
第三章校準阻抗因子與模型評分...........21
3-1問題定義............................21
3-2應用Evidence量化模型可信度..........22
3-3機率模型 的詳細結構.................23
3-3-1決定預測模型......................23
3-3-2不確定參數的先前分布..............24
3-4Evidence估算法......................26
3-5抽樣演算法..........................29
3-5-1Metropolis演算法..................29
3-5-2混合Gibbs-Metropolis演算法........31
3-6亂度(entropy)估算法.................32
3-7校準阻抗因子........................34
3-8從多種模型選定阻抗因子..............37
第四章案例分析.........................39
4-1基樁相關資訊........................39
4-4-1現地基本資料......................39
4-1-2基樁試樁資訊......................39
4-2預估單樁容許垂直承載力之模型........43
4-2-1 SPT-N法..........................44
4-2-2靜力學公式(1).....................45
4-2-3靜力學公式(2).....................46
4-3分析模型選定........................47
4-4案例訓練............................48
4-5阻抗因子與破壞機率之關係............51
4-6案例結果與討論......................53
第五章結論討論與未來展望...............55
5-1結論................................55
5-2未來展望............................56
參考文獻...............................58
附錄A 基樁試樁曲線與土壤資訊...........95
附錄B Matlab code.....................127
1.郭紘志(2005),「打擊式PC基樁極限垂直承載力支可靠度研究─以麥寮六輕廠區為例─」,國立台灣科技大學碩士論文
2.陳淑季(1998),機率方法於大地工程之應用,地工技術第三十七期,P6~17
3.陳斗生、余清瀚、葉嘉鎮(1997),海埔新生地的大地工程問題之探討─以六輕基地為例(下篇),地工技術第五十九期P91~102
4.黃俊鴻,楊志文(1990),基樁載重試驗成載立判斷方法之探討與建議,地工技術第八十期P5~P16
5.傅哲賢(2006),「基樁抗壓與抗拉之模型試驗」,國立中央大學碩士論文
6.彭祖德(1998),「台灣西部海岸海埔地預立混凝土基樁試驗資料之分析」,國立台灣大學碩士論文
7. 萬鼎工程服務公司(1999),「台塑關係企業麥寮六輕石化工業區建廠大地工程綜合評估顧問工作」,台塑營建部。
8. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki (Eds.), Second international symposium on nformation theory (pp. 267_281). Budapest: Academiai Kiado.
9.API, American Petroleum Institute (1993). Section G: foundation design. Recommended Practice for Planning, Design, and Constructing Offshore Platforms – Load and Resistance Factor Design, First Ed. API, Washington, DC.
10.ASTM (1981) “Standard Method of Testing Piles under Axial Compressive Load,” Annual Book of ASTM Standard, part 19, Designation D1143-81.
11. A. Tritschler and R. Gopinath. Improved Speaker Segmenta-tion and Segments Clustering Using the Bayesian Information Criterion. In Proc. EUROSPEECH, volume 2, pages 679–682, Paris, France, 1999.
12. Au, S.K. and Beck, J.L. (2003). “Importance sampling in high dimensions.” Structural Safety, 25, 139-163.
13.Azzous, A.S.,Baligh,M.M.,and Whittle,A.J., ”Shaft Resistance of Piles in Clay” Journal of Geotechnical Engineering, ASCE, Vol. 116, No.2, pp. 205-221
14.Barker, R. M., Duncan, J. M., Rojiani, K. B., Ooi, P. S. K., Tan, C. K. and Kim. S. G. (1991). Manuals for the Design of Bridge Foundations. NCHRP Report 343, TRB, National Research Council, Washington, DC.
15. Beck, J.L. and Katafygiotis, L.S. (1998). “Updating models and their uncertainties – Bayesian statistical framework.” Journal of Engineering Mechanics, 124(4), 455-461.
16. Beck, J.L. and Yuen, K.V. (2004). “Model Selection using Response Measurements: Bayesian Probabilistic Approach.” Journal of Engineering Mechanics, 130(2), 192-203.
17.Beirlant, J., Dudewicz, E.J., Gyorfi, L., and van der Meulen, E.C. (1997). Nonparametric entropy estimation: an overview. Int. J. Math. Stat. Sci., 6(1), 17-39.
18.Bolotin, V.V.(1969) Statistical Methods in Structural Mechanics, Holden-Day,S.F.,Cal
19.B.Zhou, J.H.L.Hansen, “Unsupervised Audio Stream Segmentation and Clus-tering Via the Baysian Information Criterion”, ICSLP 2000, vol.1, pp.714-717, Beijing, China, Oct., 2000
20.Chin,F.K.(1970) “Estimation of the Ultimate Load of Piles not Carried to Failure”, Proc. 2nd Southeast Asian Conf. on Soil Engng., PP 81-90
21.Christian,J.T.,Ladd,C.C., and Baecher,G.B.(1994) “Reliability applied to solpe stability analysis.” J.Geotech.Eng., 120(12) , 2180-2207
22.Christian J.T.(2004) “Geotechnical Engineering Reliability: How Well Do We Know What We AreDoing?” Journal of Geotechnical and Geoenvironmental Engineering,ASCE,Vol 130, No.4, pp. 985-1003. NewYork.
23.Cover, T.M. and Thomas, J.A. (1991). Elements of Information Theory, John Wiley and Sons, New York.
24.Davisson,H.T.(1972) “High Capacity piles,” Proc. Lecture Series, Innovations in Foundation Construction , ASCE, Illionis Section, 52pp
25.DM 7-2 (1982). Foundations and Earth Structures – Design Manual 7.2, Department of the Navy Naval Facilities Engineering Command, Alexandria, VA.
26.FIP, Commission on Practical Construction (1982). Recommendations for the design and construction of prestressed concrete grout anchors, FIP Wexham Springs.
27.Fuller,R.H.,and Hoy,H.E.(1970) “Pile Load Tests Including Quick-Load Test Method , Conventional Methods and Interpretations”,HRM 333,PP. 19-31
28.Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intell., 6, 721-741.
29.Gilks, W.R., Spiegelhalter, D.J., and Richardson, S. (1996). Markov chain Monte Carlo in practice, Chapman and Hill, London.
30.Goble, G.G. (2000). LRFD design codes for pile foundations-A review. In Proceedings of the 6th International Conference on the Application of Stress-wave Theory to Piles, Brazil, 11-13 September 2000. Edited by S. Niyama and J. Beim. A.A. Balkema,Rotterdam. Pp. 305-312.
31.Hacking,I.(1975) “the emergence of probability” Cambridge university press, Cambridge,U.K.
32.Hawkes, J.M. and Evans, R.H. (1951). Bond stresses in reinforced concrete columns and beams. Structural Engineer, 29(12).
33.Hasofer, A.M., and Lind,N.(1974) “Exact and Invariant Second-Moment Code Format.” J.Eng.Mech.,100(1),111-121
34. Hoeting, J.A., Madigan, D., Raftery, A.E. and Volinsky, C.T. (1999). “Bayesian model averaging: a tutorial.” Statistical Science, 14(4), 382-417.
35.Jensen,J.L.(1997)”Statistics for petroleum engineers and geoscientists,” Prentice Hall,Upper Saddle River,N.J.
36.Kulhawy, F.H., Trautmann, C.H., Beech, J.F., O'Rourke, T.D., McGuire, W., Wood, W.A., and Capano, C. (1983). Transmission Line Structure Foundations for Uplift-Compression Loading, Report EL-2870, Electric Power Research Inst., Palo Alto.
37.Lin, H. D. (2006). A preliminary study on load and factors for foundation piles in Taiwan. Invited Lecture, Proceeding, International Symposium on New Generation Design Codes for Geotechnical Engineering Practice-Taipei 2006 (with CD-ROM), World Scientific Publishing Company.
38.McVay, M. C., Birgisson, B., Zhang, L. M., Perez, A., and Putcha, S. (2000). Load and resistance factor design (LRFD) for driven piles using dynamic methods—A Florida perspective. Geotech. Test. J., 23(1), 55–66.
39.Metropolis, N., Rosenbluth, A.E., Rosenbluth, M.N., Teller, A.H., and Teller, E. (1953). Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 1087-1092.
40.Meyerhof, G.G. (1976). Bearing capacity and settlement of pile foundation. ASCE Journal of Geotechnical Engineering, 102(3), 195-228.
41.Moh and Associates (1987). Engineering properties of the soil deposits in the Taipei Basin, Report No. 85043, Ret-Ser Engineering Agency and Taipei Public Works Department, Taipei (in Chinese).
42.Paikowsky, S. G., Birgisson, B., McVay, M., Nguyen, T., Kuo, C., Baecher, G., Ayyab, B., Stenersen, K., O’Malley, K., Chernauskas, L., and O’Neill, M. (2004). Load and Resistance Factor Design (LRFD) for Deep Foundations. NCHRP Final Report 507, Transportation Research Board, Washington, DC.
43.Phoon, K.K. (1995). Reliability-based design of foundations for transmission line structures, Ph.D. Dissertation, Cornell University.
44.Robery,Y.Liang and Jian Zhou “Probability Method Applied to Dynamic Pile-Driving Control”Journal of Geotechnical and Geoenvironmental Engineering,Vol. 123,No.2,Februaary 1997, pp. 137-144
45. Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333_343.
46. S.S. Chen and P.S. Gopalakrishnan, “Clustering via the Bayesian Information Criterion with Applications in Speech Recognition,” ICASSP, Seattle, USA, 1998.
47.Terzaghi,K.(1942) “Discussion of the Progress Report of the committee on the Bearing Value of Pile Foundations” Proc. ASCE . Vol. 68, PP 311-323
48.Tomlinson, M.J. (1994). Pile Design and Construction Practice. Fourth Ed., E & FN Spon, London.
49. TGS, Taiwan Geotechnical Society (2001)
50.Veneziano,D.(1995)”Uncertainty and expert opinion in geologic hazards” Massachusetts Institute of Technology, The Earth, Engineers, and Education: A Symposium in Honor of Robert V. Whitman, Cambridge,Mass.,102-124
51.Zhang, L., Tang, W. H., and Ng, C. W. W. (2001). Reliability of axially loaded driven pile groups. ASCE Journal of Geotechnical and Environmental Engineering, 127(12), 1051-1060.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top