(3.236.222.124) 您好!臺灣時間:2021/05/11 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳慶芳
研究生(外文):Cing-Fang Wu
論文名稱:專案成功度動態預測-應用演化式支持向量機推論模式(ESIM)
論文名稱(外文):Dynamic Prediction of Project Success Using Evolutionary Support Vector Machines Inference Model(ESIM)
指導教授:鄭明淵鄭明淵引用關係
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:111
中文關鍵詞:集群分析專案成功度支持向量機快速混雜基因演算法
外文關鍵詞:Data MiningClustering AnalysisProject SuccessSupport Vector MachineFast Messy Genetic Algorithms
相關次數:
  • 被引用被引用:4
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
影響專案最後成功與否的因子眾多,而且在專案工程生命週期的不同階段,各項因子重要程度是隨時間而改變,因此在專案執行過程中很難精確預測最後的結果,往往只能依賴專案管理人員的經驗來判斷。本研究以CAPP的研究成果為基礎建立專案成功度動態預測資料庫,結合資料探勘技術(Data Mining),並嘗試以演化式支持向量機推論模式-Evolutionary Support Vector Machine Inference Model(ESIM)為模式核心,有效淬取專家知識及經驗,找出影響專案成功度的顯著因子與專案整體成功度間的映射關係,建立一專案成功度動態預測模式
本研究專案成功度動態預測可分為三個部分:(1)影響專案成功度的顯著因子篩選;(2)專案案例集群分析;(3) 應用ESIM進行成功度預測。第一部分為利用美國CII協會與威斯康辛大學合作一項名為Development of a Predictive Tool for Continuous Assessment of Project Performance 的研究計畫成果-CAPP系統,本研究應用CAPP系統對影響專案成功度的因子利用統計原理進行篩選,找出影響成功度較顯著的因子。第二部分利用k-means法對CAPP資料庫內的46筆歷史案例進行非監督式集群分析,將專案聚類成群內相似度高的群組,以利後續進行ESIM網路訓練。第三部分對分群後的歷史案例應用ESIM進行學習訓練並預測專案最後的成功度,建立專案成功度動態預測模式,並且比較分群前與分群後的預測結果,證明訓練案例藉由資料探勘技術處理後,將可以提高ESIM推論系統預測的準確率。
Various factors in different construction stages can affect a project performance. Due to the impact of the factors changes according to time, the success of project is hard to predict. Problems in prediction of project performance are full of uncertain, vague, and incomplete information. The primary objective of this research is to use the Evolutionary Support Vector Machine Inference Model (ESIM) to develop a dynamic project success prediction model for assisting project managers to predict the project outcomes. The major factors affecting the project success in the construction time frame can also be identified. Thus, to improve the project performance, proper decisions made by project managers are to enforce the management and control of the influencing factors.
This study developed a dynamic project success prediction database based on the research results of the CAPP (Continuous Assessment of Project Performance) system. CAPP system was used to identify the significant factors influencing the project success. Combining the Data Mining technique, the 46 historical construction projects were clustered into groups using the K-means method. Cases with higher similarity were categorized within each cluster to proceed ESIM network training. The training results can be used to predict the success of project. Furthermore, the predictive results before and after clustering were compared to prove that training cases through Data Mining treatment can improve the prediction accuracy of ESIM inference system.
目錄
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 研究範圍與限制 4
1.4 研究流程與方法 4
1.4.1 研究內容 4
1.4.2 研究流程 5
1.5 論文架構 7
第二章 文獻回顧 8
2.1 Continuous Assessment of Project Performance簡介 8
2.1.1 工程專案資料特徵 8
2.1.2 工程專案資料分析 9
2.1.3 工程專案資料分析工具 11
2.2 資料探勘技術Data Mining 13
2.2.1資料探勘的主要工作 14
2.2.2群集化(Clustering) 16
2.2.2.1 K-Means Cluster Analysis 16
2.3 演化式支持向量機推論模式 19
2.3.1支持向量機簡介 20
2.3.1.1支持向量機分類 20
2.3.1.2支持向量機迴歸 26
2.3.2基因演算法 28
2.3.3 快速混雜基因(fmGA)演算法 28
2.3.4 演化式支持向量機推論模式(Evolutionary Support Vector Machine Inference Model-ESIM) 32
2.3.5 ESIM特性與限制 34
2.3.5.1 ESIM特性 34
2.3.5.2 ESIM限制 35
2.3.6 ESIM應用 35
第三章專案成功度影響因子篩選模式建立 38
3.1CAPP系統應用 38
3.1.1 系統參數設定 38
3.1.2 成功度定義 39
3.1.3 專案成功度顯著因子篩選 40
3.2顯著因子分析 43
3.3專案資料庫數據擷取 44
第四章 專案成功度動態預測模式建立 50
4.1 專案成功度動態預測模式設計 50
4.2 ESIM可行性分析 52
4.3 ESIS模式訓練與測試-集群分析前 53
4.3.1 ESIM架構 53
4.3.2 專案變數 56
4.3.3 專案案例預處理 56
4.3.4 ESIM模式參數設定 57
4.3.5 專案成功度動態預測模式訓練與測試-集群分析前 58
4.4專案案例群集分析 63
4.4.1集群分析方法選擇 64
4.4.2 K-means法專案資料庫案例聚類 64
4.4.3專案群集結果分析 66
4.4.4 建立專案成功度動態預測資料庫 68
4.5 ESIM模式訓練與測試-集群分析後 71
4.5.1 專案成功度動態預測模式訓練與測試-集群分析後 71
4.5.2 分群前與分群後預測結果比較分析 75
4.6模式應用 76
第五章 結論與建議 78
5.1 結論 78
5.2 建議 78
參考文獻 80
附錄A 83
附錄B 88
參考文獻
1.林信宏,「類神經網路在工程績效管理上之應用」,碩士論文,國立台灣大學土木工程研究所,1999。
2.陳弼宏,「建立專案成功度動態預測模式-演化式模糊類神經模式推論模式」,國立台灣科技大學碩士論文,2003。
3.Russell, J. S., Jaselskis, E. J., and Lawrence, S. P. (1997). “Continuous Assessment of Project Performance.” Journal of Construction Engineering and Management, ASCE, 123(1), 64–71.
4.Russell, J.S., Jaselskis, E.J., Lawrence, S.P., Tserng, H.P., and Prestine, M.T. (1996),“Development of a Predictive Tool for Continuous Assessment of Project Performance,”Source Document, The Construction Industry Institute.
5.陳麗君,「應用資料探勘技術於信用卡黃金級客戶之顧客關係管理」,碩士論文,元智大學工業工程與管理學系,2002。
6.劉世琪,「應用資料挖掘探討顧客價值-以汽車維修業為例」,碩士論文,朝陽科技大學工業工程與管理系,2003。
7.柯千禾,「山坡地社區防災體系之研究與建立」, 碩士論文,國立台灣科技大學工程技術研究所,台北,1999。
8.Fukahori, K. and Kubota, Y. Consistency evaluation of landscape design by a decision support system. Computer-Aided Civil and Infrastructure Engineering, 15(5), 342–354, 2000.
9.Sundin, S., and Braban-Ledoux, C. Artificial intelligence–based decision support technologies in pavement management. Computer-Aided Civil and Infrastructure Engineering, 16(2), 143–157, 2001.
10.吳育偉,「支持向量機最佳化模式-應用於營建管理決策」,第11屆營建工程與管理學術研討會,2007。
11.Chang C.-C. and Lin C.-J.. Training nu-Support Vector Classifiers: Theory and Algorithms. Neural Computation 13, 2119-2147, 2001.
12.陳俊榮,「基因演算法在視覺系統參數校正及尺寸量測上之應用研究」,碩士論文,國立台灣科技大學工程技術研究所,台北,1999。
13.Goldberg D.E., Deb K., Kaegupta H., Harik G., Rapid, accurate optimization of difficult problems using fast messy genetic algorithms, Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 56– 64, 1993
14.D. Knjazew, G.A. Ome, A Competent Genetic Algorithm for Solving Permutation and Scheduling Problems, Kluwer Academic Publishers, Boston, 2003.
15.許淑婷,「利用快速混雜基因演算法與模擬機制建立設計專案作業程序最佳化之研究」,國立成功大學碩士論文,2006。
16.簡崑棋,「結合模糊類神經模式與快速混雜基因演算法於專案工期之預測」,國立成功大學碩士論文,2003。
17.吳宗桂,「營造廠專業協力廠商評鑑模式之建立與應用」,碩士論文,國立台灣科技大學營建工程系,台北,2001。
18.楊智民,劉廣利,「不確定性支持向量機原理及應用」,科學出版社,中國,2006。
19.Cortes and V. Vapnik., ”Support-vector network,” Machine Learning,vol.20,No.3,pp.273-297(1995)。
20.Cheng Min-Yuan and Ko Chien-Ho, Object-Oriented Evolutionary Fuzzy Neural Inference System for Construction Management, Journal of Construction Engineering and Management, ASCE, Vol. 129, No. 4, pp.461-469, 2003.
21.Martino, J. P. (1993). Technological Forecasting for Decision Making. 3rd ed., New York, McGraw-Hill, 251–252.
22.Davis, D. (1996). Business research for decision making. 4th ed., Belmont, Duxbury Press, 4.
23.鄧乃楊等(2004),”數據挖掘的新方法─支持向量機”,科學出版社,中國。
24.Yonas B. Dibike1 et al.,”Support Vector Machines:Review and Applications in Civil Engineering,” Proc. of the 2nd Joint Workshop on Application of AI in Civil engineering(2000)。
25.Yonas B. Dibike1, ”Model Induction with Support Vector Machines: Introduction and Applications,” ASCE Journal of Computing in Civil Engineering, vol.15, No.3,pp.208-216(2001)。
26.Thorsten Joachims, http://svmlight.joachims.org/svm_struct.html。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔