(3.237.97.64) 您好!臺灣時間:2021/03/03 01:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡田畯
研究生(外文):Tian-chun Tsai
論文名稱:以聚乙烯-乙烯醇製備可選擇吸附尿液中小分子(肌酸酐、尿素和8-羥基去氧鳥糞嘌呤核苷)之分子模版及其性質分析與電化學評估
論文名稱(外文):Preparation, Characterization and Electrochemical Evaluation of Urinary Small Molecules (creatinine, urea and 8-hydroxy deoxyguanosine)-imprinted Poly(ethylene-co-vinyl alcohol)
指導教授:林宏殷
指導教授(外文):Hung-yin Lin
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:155
中文關鍵詞:聚乙烯-乙烯醇分子拓印模版肌酸酐尿素8-羥基去氧鳥糞嘌呤核苷電化學量測
外文關鍵詞:Poly(ethylene-co-vinyl alcohol)Molecular imprinted polymerCreatinineUrea8-OHdGElectrochemical measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
尿液檢驗具有快速方便、非侵入性及檢體量充足等優點;腎元的結構包含腎小球與腎小管,負責執行腎臟功能之重要單位,在尿液的病理檢驗中,肌酸酐和尿素的濃度可以評估腎小球過濾效果,而溶菌�◆P8-羥基去氧鳥糞嘌呤核�ㄓㄥ�可以作為發炎及氧化壓力之指標,也可以檢驗腎小管之再吸收功能,因此採用上述四種分子檢驗腎元過濾及再吸收之功能。分子拓印模版具有成本低、材料性質穩定及可重複使用之優點,利用分子拓印技術製備生物感測器之辨識元件,希冀應用於居家照護系統。
本研究利用聚乙烯-乙烯醇作為拓印薄膜材料,再吸附的結果發現含有乙烯比例27 mol%的拓印模板分別對於肌酸酐、尿素及8-羥基去氧鳥糞嘌呤具有12.83 ± 0.56、233.73 ± 50.73及4.75 ± 0.06 μg/cm2的吸附量;而含有乙烯比例44 mol%的拓印模版則對於溶菌�”膃�17.67 ± 7.28 μg/cm2的高吸附量。此外,以肌酸酐分子拓印模版為例,混合目標分子與干擾因子進行競爭吸附實驗,其他干擾因子相較於肌酸酐的吸附量約為10 ~ 23.7 %,推斷拓印模版具有良好的辨識效果;為證明拓印模版的應用性,直接採取人體尿液檢體,測試拓印模版對於目標分子之辨識吸附能力,對於肌酸酐分子的吸附量為10.65 ± 1.45 μg/cm2。
此外,將拓印模版塗佈於工作電極表面,使用電化學分析儀進行循環式電壓法量測,發現在電壓0.3 ~ 0.4 V的範圍,肌酸酐、尿素、溶菌�”膃陶怳j的電流靈敏度,依序為10.31、0.006、327.25 mA/mg/mL。且利用安培法進行目標分子與干擾因子在不同濃度之量測實驗,肌酸酐濃度範圍為0.36 ~ 9.09 mg/mL,發現電流與分子濃度呈現線性變化I= 2.378x Ccreatinine- 0.674,量測溶菌�◆P尿素則發現電流變化不明顯或出現下降的趨勢。
利用化學分析電子儀量測薄膜表面的氮、硫元素,發現溶菌�〝搹L模版經過清洗後,氮、硫原子濃度比例分別減少0.57、0.15 %,經由濃度0.1 mg/mL的溶菌�’A吸附後,氮、硫原子濃度則增加0.37、0.76 %。此外,利用原子力顯微鏡分析電極表面的拓印薄膜厚度,其聚乙烯-乙烯醇濃度為0.78 wt%的條件下,發現厚度約為180 ~ 250 nm,而且由溶菌�〝搹L模版的表面影像發現許多排列規律、直徑0.5 μm的孔洞,可能是由10萬 ~ 30萬個分子聚集所造成的拓印孔洞。
在本研究中使用聚乙烯-乙烯醇具有生物相容性佳、含有特定比例的親疏水性等特色,對於不同分子製備拓印模版,探討拓印模版與目標分子藉由彼此的親疏水性產生氫鍵、凡得瓦力等鍵結能力,以比較具有不同親疏水特性的聚乙烯-乙烯醇拓印模版對於目標分子之辨識關聯性。
A nephron is the basic structural and functional unit of the kidney, and which contains glomerulus and renal tubules. The urinary levels of creatinine and urea are the important markers for glomerular filtration rate (GFR), and lysozyme and 8-hydroxydeoxyguanosine (8-OHdG) are not only related with inflammation and cellular oxidative stress, but it also can be used to assess the tubular reabsorption efficiency. These biomarkers can be employed as indicators of the filtration and reabsorption functions of a nephron. The advantage of urinalysis is rapid, non-invasive and can be used to screen large numbers of samples. The molecularly imprinted polymers (MIPs) could be cheaper, stable and reusable sensing element of biosensors for the homecare system application.
In this study, poly(ethylene-co-vinyl alcohol) (EVAL) was used to prepare molecularly imprinted membranes. The rebinding results indicated that EVAL containing ethylene 27 mol% have high binding amount for creatinine, urea and 8-hydroxydeoxyguanosine, but 44 ethylene mol% for lysozyme. Mixture of the target and interference molecules was competitive binding tested on the MIPs; for instance, interference adsorbed on the creatinine-imprinted membranes are only 10 ~ 23.7 wt% compared with the creatinine rebinding capacity. Moreover, the binding amount of creatinine on creatinine-imprinted membranes is 10.65 ± 1.45 μg/cm2 in urine samples.
When coating MIPs on the working electrode in the cyclic voltammetry, the redox voltage range is from 0.3~0.4V with the highest sensitivity 10.31, 0.006 and 327.25 mA/mg/mL for creatinine, lysozyme and urea measurement. Amperometrically measured the current change of creatinine-imprinted coated electrode in different concentrations of the target molecule and interference solutions, the current increased and creatinine concentration had a linear tendency whose equation was I= 2.378x Ccreatinine- 0.674, where I is the current measured in mA and Ccreatinine is the creatinine concentration in mg/mL. The current variation, however, was unapparent or decreased for lysozyme and urea measurement.
The quantity measurement of nitrogen and sulfur atoms on the surface of imprinted membranes was performed by Electron Spectroscopy for Chemical Analysis (ESCA). For lysozyme-imprinted membranes, nitrogen and sulfur atoms were decreased by 0.57 % and 0.15 % after the washing step, and increased 0.37% and 0.76 % after lysozyme rebinding. In addition, atomic force microscopy (AFM) image of those membranes depicted that the thickness between 180 to 250 nm when the casting concentration of EVAL is 0.78 wt%. Also, many methodic pores was around 0.5 μm in diameter were found and might due to the aggregation of 100,000 ~ 300,000 lysozyme molecules during imprinting.
Finally, we found that EVAL had a very well biocompatibility and their hydrophilic-hydrophobic property could non-covalently interact with the target molecules by hydrogen bonds and Van der Waal force.
總 目 錄
誌謝......................................................... I
總目錄…………………………………………………………………... II
圖目錄………………………………………...………………………… V
表目錄…………………………………………………………………... VIII
中文摘要………………………………………………………………... 1
ABSTRACT…………………………………………………………….. 3
第一章 前言
1.1 研究背景…………………………………………………………… 6
1.2 實驗目的…………………………………………………………… 6
1.3 文獻回顧…………………………………………………………… 8
1.3.1指標分子之介紹……………………………………………….. 11
1.3.2分子拓印技術 (Molecularly imprinted technology) ……… 22
1.3.2.1 分子拓印之原理………………………………………….. 22
1.3.2.2 對目標分子之辨識因素………………………………….. 24
1.3.2.3 分子拓印模版的特色…………………………………….. 24
1.3.2.4 分子拓印模版之應用領域……………………………….. 29
1.3.3 乙烯-乙烯醇共聚合物 (Poly(vinyl alcohol-co- ethylene), EVAL) ………………………………………………………..
31
1.3.4 生物感測器 (Biosensor) 之架構…………………………….. 36
第二章 材料與方法
2.1 實驗藥品與儀器…………………………………………………… 41
2.1.1 藥品……………………………………………………………. 41
2.1.2 實驗設備與儀器………………………………………………. 43
2.2 實驗方法與步驟
2.2.1 拓印基板的清洗步驟…………………………………………. 44
2.2.2 製備分子拓印薄膜……………………………………………. 44
2.2.3 拓印薄膜對於目標分子的再吸附……………………………. 47
2.3 電化學分析實驗
2.3.1電極的製備方式……………………………………………….. 49
2.3.2 利用循環式電壓法 (cyclic voltammetry, CV) 及安培法 (amperometry) 進行 量測……………………………………… 51
2.4 分子拓印薄膜性質研究
2.4.1掃描式電子顯微鏡 (Scanning electron microscope, SEM) 和X-射線能量散佈分析儀 (Energy Dispersive X-ray Spectrometer, EDS) ………………….53
2.4.2 化學分析電子光譜儀 (Electron Spectroscopy for Chemical Analysis, ESCA) ….56
2.4.2原子力顯微鏡 (Atomic Force Microscope, AFM) …………… 59
第三章 實驗結果與討論
3.1 評估分子拓印薄膜對於目標分子的拓印效果
3.1.1含有不同乙烯比例的拓印薄膜對於目標分子之吸附性…….. 61
3.1.2分子拓印薄膜之吸附動力分析……………………………….. 71
3.1.3分子拓印薄膜之辨識性……………………………………….. 78
3.1.4分子拓印薄膜對於人體尿液之應用………………………….. 82
3.2 電化學量測
3.2.1 循環式電壓法…………………………………………………. 87
3.2.2 伏安法…………………………………………………………. 93
3.2.2.1 目標分子濃度…………………………………………….. 93
3.2.3.2 干擾分子………………………………………………….. 98
3.2.2.3 人體尿液檢測…………………………………………….. 101
3.3 分子拓印薄膜性質研究
3.3.1 X-射線能量散佈分析儀……………………………………….. 104
3.3.2 化學分析電子光譜儀…………………………………………. 109
3.3.3 原子力顯微鏡…………………………………………………. 116
第四章 結論…………………………………………………………... 123
第五章 參考文獻……………………………………………………... 127
附錄A 溶菌�� (Lysozyme) 分子之胺基酸序列…………….……. 138
附錄B 電解液配方…………………………………………....…….. 139
附錄C 磷酸緩衝溶液 (Phosphate buffer solution, PBS) 配方……. 140
附錄D目標分子濃度對應光譜強度之檢量線………………...…... 141
附錄E 目標分子濃度對應氧化還原反應電流…………………….. 143
附錄F 化學分析電子儀 (ESCA) 分析指標元素…………………. 145

圖 目 錄
圖1-1 腎臟構造示意圖…………………………………………….. 9
圖1-2 腎元結構…………………………………………………….. 10
圖1-3 肌酸酐之合成與代謝路徑………………………………….. 14
圖1-4 尿素之合成與代謝路徑…………………………………….. 16
圖1-5 肌酸酐分子結構式………………………………………….. 17
圖1-6 尿素分子結構式…………………………………………….. 17
圖1-7 2’-去氧鳥糞嘌呤核�ㄗ�到氧自由基影響而形成8-羥基去氧鳥糞嘌呤核 �ㄐK…………………………………………19
圖1-8 分子拓印模版 (MIPs) 之原理示意圖…………………….. 23
圖1-9 乙烯-乙烯醇共聚合物結構式……………………………… 34
圖1-10 固化成膜之三元相圖……………………………………….. 35
圖1-11 生物感測器之設計示意圖………………………………….. 37
圖2-1 製備分子拓印薄膜之示意圖……………………………….. 46
圖2-2 電化學分析儀……………………………………………….. 50
圖2-3 電化學分析量測之裝置圖………………………………….. 52
圖2-4 掃描式電子顯微鏡和X-射線能量散佈分析儀……………. 55
圖2-5 化學分析電子光譜儀之機制示意圖……………………….. 58
圖2-6 原子力顯微鏡……………………………………………….. 60
圖3-1 肌酸酐拓印模版與非分子拓印模版的拓印效率………….. 66
圖3-2 尿素拓印模版與非分子拓印模版的拓印效率…………….. 67
圖3-3 鳥糞嘌呤拓印模版與非分子拓印模版的拓印效率……….. 68
圖3-4 8-羥基鳥糞嘌呤拓印模版與非分子拓印模版的拓印效率... 69
圖3-5 溶菌�〝搹L模版與非分子拓印模版的拓印效率………….. 70
圖3-6 (a)肌酸酐拓印薄膜;(b)尿素拓印薄膜;(c)8-羥基鳥糞嘌呤拓印薄膜;(d)溶菌�〝搹L薄膜之吸附動力分析………73
圖3-7 干擾分子對於肌酸酐拓印模版競爭吸附之結果………….. 80
圖3-8 溶菌�〝搹L模版對於不同種類的球狀蛋白之吸附量…….. 81
圖3-9 肌酸酐拓印模版應用於尿液檢體………………………….. 84
圖3-10 尿素拓印模版應用於人體尿液吸附……………………….. 85
圖3-11 肌酸酐拓印模版應用於尿素模版預先吸附之人體尿液檢體…….86
圖3-12 利用循環電壓法量測肌酸酐之結果……………………….. 90
圖3-13 利用循環電壓法量測尿素之結果………………………….. 91
圖3-14 利用循環電壓法量測溶菌�﹞孝痕G……………………….. 92
圖3-15 利用伏安法量測肌酸酐濃度與反應電流變化之關係…….. 95
圖3-16 利用伏安法量測尿素濃度與反應電流變化之關係……….. 96
圖3-17 利用伏安法量測溶菌�▼@度與反應電流變化之關係…….. 97
圖3-18 利用伏安法量測干擾分子對於肌酸酐拓印薄膜之影響….. 99
圖3-19 利用伏安法量測干擾分子對於尿素拓印薄膜之影響…….. 100
圖3-20 利用伏安法量測人體尿液………………………………….. 102
圖3-21 肌酸酐拓印薄膜清洗前後與再吸附之EDS結果…………. 106
圖3-22 尿素拓印薄膜清洗前後與再吸附之EDS結果……………. 107
圖3-23 溶菌�〝搹L薄膜清洗前後與再吸附之EDS結果…………. 108
圖3-24 肌酸酐拓印薄膜清洗前後與再吸附之ESCA分析結果….. 110
圖3-25 尿素拓印薄膜清洗前後與再吸附之ESCA分析結果…….. 112
圖3-26 溶菌�〝搹L薄膜清洗前後與再吸附之ESCA分析結果….. 114
圖3-27 利用AFM觀察塗佈於工作電極表面的拓印薄膜厚度…… 117
圖3-28 利用AFM觀察肌酸酐拓印薄膜清洗後與再吸附的表面形貌………119
圖3-29 利用AFM觀察尿素拓印薄膜清洗後與再吸附的表面形貌 120
圖3-30 利用AFM觀察溶菌�〝搹L薄膜清洗後與再吸附的表面形貌………121












表 目 錄
表1-1 尿液中常見的指標分子…………………………………….. 12
表1-2 以肌酸酐、溶菌�′陞媦苳壑l製備拓印模版…………….. 21
表1-3 分子拓印技術應用之範例………………………………….. 26
表3-1 Hydropathy index……………………………………………. 65
表3-2 分子拓印模版的吸附動力………………………………….. 77
表3-3 電化學量測與醫院生化檢驗之結果……………………….. 103
表3-4 利用ESCA分析比較肌酸酐拓印薄膜表面的元素變化….. 111
表3-5 利用ESCA分析比較尿素拓印薄膜表面的元素變化…….. 113
表3-6 利用ESCA分析比較溶菌�〝搹L薄膜表面的元素變化….. 115
表3-7 分子拓印薄膜的表面孔洞經過目標分子再吸附前後之變化……………………………………………………………..
122
Ansell, R.J. (2004) Molecularly imprinted polymers in pseudoimmunoassay, Journal of Chromatography B, 804, 151-165.

Arnett, S.D., Osbourn, D.M., Moore, K.D., Vandaveer, S.S. and Lunte, C.E. (2005) Determination of 8-oxoguanine and 8-hydroxy-2'- deoxyguanosine in the rat cerebral cortex using microdialysis sampling and capillary electrophoresis with electrochemical detection, Journal of Chromatography B, 827, 16-25.

Ashwood, E.R., Border, B., Burtis, C.A. and Tietz, N.W. (2001) Tietz fundamentals of clinical chemistry. WB Saunders, Philadelphia.

Atashbar, M.Z., Bejcek, B., Vijha, A. and Singamaneni, S. (2005) QCM biosensor with ultra thin polymer film, Sensors and Actuators B: Chemical, 107, 945-951.

Bereli, N., Anda, M.e., Baydemir, G., Say, R., Galaev, I.Y. and Denizli, A. (2008) Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels, Journal of Chromatography A, 1190, 18-26.

Boonla, C., Wunsuwan, R., Tungsanga, K. and Tosukhowong, P. (2007) Urinary 8-hydroxydeoxyguanosine is elevated in patients with nephrolithiasis, Urological Research, 35, 185-191.

Bossi, A., Bonini, F., Turner, A.P.F. and Piletsky, S.A. (2007) Molecularly imprinted polymers for the recognition of proteins: The state of the art, Biosensors and Bioelectronics, 22, 1131-1137.

Caro, E., Marce, R.M., Borrull, F., Cormack, P.A.G. and Sherrington, D.C. (2006) Application of molecularly imprinted polymers to solid-phase extraction of compounds from environmental and biological samples, TrAC Trends in Analytical Chemistry, 25, 143-154.

Cheng, L.-P., Lin, H.-Y., Chen, L.-W. and Young, T.-H. (1998) Solute rejection of dextran by EVAL membranes with asymmetric and particulate morphologies, Polymer, 39, 2135-2142.

Chou, P.-C., Rick, J. and Chou, T.-C. (2005) C-reactive protein thin-film molecularly imprinted polymers formed using a micro-contact approach, Analytica Chimica Acta, 542, 20-25.

Cunliffe, D., Kirby, A. and Alexander, C. (2005) Molecularly imprinted drug delivery systems, Advanced Drug Delivery Reviews, 57, 1836-1853.

Dybko, A. and Wroblewski, W. (2002) Analyte recognition and signal conversion in potentiometric and optical chemical sensors, Polish Journal of Environmental Studies, 11, 5-10.

Ers�庂, A., Denizli, A., �頊can, A. and Say, R. (2005) Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance, Biosensors and Bioelectronics, 20, 2197-2202.

Fukuda, M., Yamauchi, H., Yamamoto, H., Aminaka, M., Murakami, H., Kamiyama, N., Miyamoto, Y. and Koitabashi, Y. (2008) The evaluation of oxidative DNA damage in children with brain damage using 8-hydroxydeoxyguanosine levels, Brain and Development, 30, 131-136.

Guo, T.-Y., Xia, Y.-Q., Hao, G.-J., Zhang, B.-H., Fu, G.-Q., Yuan, Z., He, B.-L. and Kennedy, J.F. (2005) Chemically modified chitosan beads as matrices for adsorptive separation of proteins by molecularly imprinted polymer, Carbohydrate Polymers, 62, 214-221.

Guo, T.Y., Xia, Y.Q., Hao, G.J., Song, M.D. and Zhang, B.H. (2004) Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads, Biomaterials, 25, 5905-5912.

Haginaka, J., Tabo, H., Ichitani, M., Takihara, T., Sugimoto, A. and Sambe, H. (2007) Uniformly-sized, molecularly imprinted polymers for (-)-epigallocatechin gallate, -epicatechin gallate and -gallocatechin gallate by multi-step swelling and polymerization method, Journal of Chromatography A, 1156, 45-50.

Harri, M., Kasai, H., Mori, T., Tornaeus, J., Savela, K. and Peltonen, K. (2007) Analysis of 8-hydroxy-2'-deoxyguanosine in urine using high-performance liquid chromatography-electrospray tandem mass spectrometry, Journal of Chromatography B, 853, 242-246.

Holthoff, E.L. and Bright, F.V. (2007) Molecularly templated materials in chemical sensing, Analytica Chimica Acta, 594, 147-161.

Hsieh, R.-Y., Tsai, H.-A. and Syu, M.-J. (2006) Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums, Biomaterials, 27, 2083-2089.

Hsu, C.-Y., Lin, H.-Y., Thomas, J.L., Wu, B.-T. and Chou, T.-C. (2006) Incorporation of styrene enhances recognition of ribonuclease A by molecularly imprinted polymers, Biosensors and Bioelectronics, 22, 355-363.

Huang, C.-Y., Syu, M.-J., Chang, Y.-S., Chang, C.-H., Chou, T.-C. and Liu, B.-D. (2007) A portable potentiostat for the bilirubin-specific sensor prepared from molecular imprinting, Biosensors and Bioelectronics, 22, 1694-1699.

Johnson, G.B. (2006) 生物學. 學銘圖書, 歐亞書局, 台北市.

Kyte, J. and Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, 157, 105-132.

Lai, P.-S., Shieh, M.-J., Pai, C.-L., Wang, C.-Y. and Young, T.-H. (2006) A pH-sensitive EVAL membrane by blending with PAA, Journal of Membrane Science, 275, 89-96.

Lakshmi, D., Prasad, B.B. and Sharma, P.S. (2006) Creatinine sensor based on a molecularly imprinted polymer-modified hanging mercury drop electrode, Talanta, 70, 272-280.
Lee, M.-H., Tsai, T.-C. and Lin, H.-Y. (2008) Recognition of Creatinine by Poly (Ethylene-co-Vinyl-Alcohol) Molecular Imprinting Membrane, Desalination, 234, 126-133.

Lehninger, A.L., Nelson, D.L. and Cox, M.M. (2005) Lehninger principles of biochemistry. Sara Tenney.

Lin, D.-T., Cheng, L.-P., Kang, Y.-J., Chen, L.-W. and Young, T.-H. (1998) Effects of precipitation conditions on the membrane morphology and permeation characteristics, Journal of Membrane Science, 140, 185-194.

Lin, H.-Y., Hsu, C.-Y., Thomas, J.L., Wang, S.-E., Chen, H.-C. and Chou, T.-C. (2006) The microcontact imprinting of proteins: The effect of cross-linking monomers for lysozyme, ribonuclease A and myoglobin, Biosensors and Bioelectronics, 22, 534-543.

Luo, R.-L., Young, T.-H. and Sun, Y.-M. (2003) Structure formation and characterization of EVAL membranes with cosolvent of isopropanol and water, Polymer, 44, 157-166.

Luppa, P.B., Sokoll, L.J. and Chan, D.W. (2001) Immunosensors- -principles and applications to clinical chemistry, Clinica Chimica Acta, 314, 1-26.

Matsunaga, T., Hishiya, T. and Takeuchi, T. (2007) Surface plasmon resonance sensor for lysozyme based on molecularly imprinted thin films, Analytica Chimica Acta, 591, 63-67.

Mayer, F. (1999) Biology of the prokaryotes. Thieme Stuttgart.

Ou, S.H., Wu, M.C., Chou, T.C. and Liu, C.C. (2004) Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme, Analytica Chimica Acta, 504, 163-166.

Sanchez-Barragan, I., Karim, K., Costa-Fernandez, J.M., Piletsky, S.A. and Sanz-Medel, A. (2007) A molecularly imprinted polymer for carbaryl determination in water, Sensors and Actuators B: Chemical, 123, 798-804.

Shun, C.-T. and Young, T.-H. (2000) The effect of surface properties of EVAL membranes on the inflammatory response, Materials Science and Engineering: C, 13, 75-83.

Silvestri, D., Coluccio, M.L., Barbani, N., Ciardelli, G., Cristallini, C., Pegoraro, C. and Giusti, P. (2006) Poly(ethylene-co-vinyl alcohol) membranes with specific adsorption properties for potential clinical application, Desalination, 199, 138-140.

Svoboda, P. and Kasai, H. (2004) Simultaneous HPLC analysis of 8-hydroxydeoxyguanosine and 7-methylguanine in urine from humans and rodents, Analytical Biochemistry, 334, 239-250.

Syu, M.-J., Chiu, T.-C., Lai, C.-Y. and Chang, Y.-S. (2006) Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly(MAA-co-EGDMA) film, Biosensors and Bioelectronics 22, 550-557.

Tortora, G.J., Funke, B.R. and Case, C.L. (2004) Microbiology. Daryl Fox.

Wan Ngah, W.S., Endud, C.S. and Mayanar, R. (2002) Removal of copper (II) ions from aqueous solution onto chitosan and cross-linked chitosan beads, Reactive and Functional Polymers, 50, 181-190.

Watanabe, E., Matsuda, N., Shiga, T., Kajimoto, K., Ajiro, Y., Kawarai, H., Kasanuki, H. and Kawana, M. (2006) Significance of 8-Hydroxy-2'-Deoxyguanosine Levels in Patients With Idiopathic Dilated Cardiomyopathy, Journal of Cardiac Failure, 12, 527-532.

Wikipedia Image:Gray1128.png.

Wu, A.-H. and Syu, M.-J. (2006) Synthesis of bilirubin imprinted polymer thin film for the continuous detection of bilirubin in an MIP/QCM/FIA system, Biosensors and Bioelectronics, 21, 2345–2353.

Wulff, G., Sarhan, A. and Zabrocki, K. (1973), Tetrahedron Letters, 14, 4329-4332.

Xie, J., Zhu, L., Luo, H., Zhou, L., Li, C. and Xu, X. (2001) Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin, Journal of Chromatography A, 934, 1-11.

Yasuhara, T., Hara, K., Sethi, K.D., Morgan, J.C. and Borlongan, C.V. (2007) Increased 8-OHdG levels in the urine, serum, and substantia nigra of hemiparkinsonian rats, Brain Research, 1133, 49-52.

Young, T.-H. and Chen, L.-W. (1995) Pore formation mechanism of membranes from phase inversion process, Desalination, 103, 233-247.
Young, T.-H., Chen, L.-W. and Cheng, L.-P. (1996) Membranes with a microparticulate morphology, Polymer, 37, 1305-1310.

Young, T.-H., Cheng, L.-P., You, W.-M. and Chen, L.-Y. (1999) Prediction of EVAL membrane morphologies using the phase diagram of water-DMSO-EVAL at different temperatures, Polymer, 40, 2189-2195.

Young, T.-H., Chuang, W.-Y., Hsieh, M.-Y., Chen, L.-W. and Hsu, J.-P. (2002) Assessment and modeling of poly(vinyl alcohol) bioartificial pancreas in vivo, Biomaterials, 23, 3495-3501.

Young, T.-H., Chuang, W.-Y., Wei, C.-W. and Tang, C.-Y. (2001) Investigation of the drug distribution and release characteristics from particulate membranes, Journal of Membrane Science, 191, 199-205.

Young, T.-H., Lin, C.-W., Cheng, L.-P. and Hsieh, C.-C. (2001) Preparation of EVAL membranes with smooth and particulate morphologies for neuronal culture, Biomaterials, 22, 1771-1777.

Young, T.-H., Lin, D.-T., Chen, L.-Y., Huang, Y.-H. and Chiu, W.-Y. (1999) Membranes with a particulate morphology prepared by a dry-wet casting process, Polymer, 40, 5257-5264.

Young, T.-H., Wang, D.-M., Hsieh, C.-C. and Chen, L.-W. (1998) The effect of the second phase inversion on microstructures in phase inversion EVAL membranes, Journal of Membrane Science, 146, 169-178.

Young, T.-H., Yao, C.-H., Sun, J.-S., Lai, C.-P. and Chen, L.-W. (1998) The effect of morphology variety of EVAL membranes on the behavior of myoblasts in vitro, Biomaterials, 19, 717-724.

Young, T.H., Cheng, L.P. and Lin, H.Y. (2000) Interesting behavior for filtration of macromolecules through EVAL membranes, Polymer, 41, 377-383.

何敏夫 (1998) 臨床化學. 合記圖書出版社, 台北市.

胡啟章 (2002) 電化學原理與方法. 五南圖書出版有限公司, 台北市.

財團法人中華民國腎臟基金會 台灣地區洗腎人數統計. 台北市.

端木樑, 李建雄, 翁郁嘉 and 黃淑姿 (2003) 生物化學. 藝軒圖書出版社, 台北市.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 以聚乙烯-乙烯醇分子模版結合石英震盪天平對唾液水解蛋白(澱粉酶、脂解酶和溶菌酶)之辨識與檢測
2. 製備乙烯-乙烯醇共聚合蛋白質分子模版及其性質之研究
3. 製備聚乙烯-乙烯醇/磁性複合微粒之分子模版應用於澱粉酶催化
4. 在微流體系統以拓印聚乙烯乙烯醇分子模版應用於電化學感測前列腺癌生物指標分子(肌氨酸、新喋呤和肌酸酐)
5. 製備聚乙烯乙烯醇/量子點複合奈米微粒之分子模版應用於分子感測及其性質分析
6. 尿液中生物指標分子(香草扁桃酸和退黑激素)拓印聚乙烯乙烯醇電極之製備並應用於差式脈波伏安法電化學感測系統
7. 利用奈米金材料/自組裝單層膜修飾微電極發展多巴胺生物感測器之應用
8. 於乙烯-乙烯醇共聚物上高效率製造可注射之毛囊狀真皮乳突-角質細胞混合性微組織應用於毛囊再生
9. 以分子模版技術用於螢光式與電化學阻抗式分析感測肌酸酐
10. 磺酸化乙烯-乙烯醇共聚物之製備與其於直接甲醇燃料電池質子傳導膜之應用
11. 多頻道石化工業有機氣體壓電感測器研製與應用
12. 乙烯-乙烯醇共聚合物薄膜生物適合性之研究
13. 以鹼性磷酸酶拓印聚乙烯乙烯醇/量子點複合微粒檢測及標識誘導型多潛能性幹細胞
14. 製備重組LL-37及表面聲波-分子模板生物感測器應用於檢測LL-37
15. 利用石英晶體微天秤發展細胞檢測平台
 
系統版面圖檔 系統版面圖檔