跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/19 14:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾厚強
研究生(外文):Hou-Chiang Tseng
論文名稱:植基於α-trimmedmean演算法與支向量機之強韌性無失真影像浮水印
論文名稱(外文):Robust Lossless Watermarking Based on α-trimmed Mean Algorithm and Support Vector Machine
指導教授:蔡鴻旭蔡鴻旭引用關係
指導教授(外文):Hung-Hsu Tsai
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:88
中文關鍵詞:支向量機離散小波轉換無失真浮水印影像驗證
外文關鍵詞:Support Vector MachineDiscrete Wavelet TransformLossless WatermarkingImage Authentication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:546
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文植基於支向量機與α-trimmed演算法提出一強韌性影像浮水印技術,此技術是利用α-trimmed mean演算法將可能遭受污染的係數予以移除,使產生的影像特徵資訊能夠更加穩定。本技術在嵌入浮水印的過程中並未修改任何原始影像的資訊,而是利用支向量機直接記憶影像特徵浮水印與使用者簽章之間的關係。最後在驗證所有權時,只需利用已訓練的支向量機便能夠直接估計出使用者簽章。從模擬實驗證明,本論文提出技術不僅能有效抵抗常見的影像攻擊,比起以往所提出的浮水印技術有更佳的效果。因此能夠有效被運用至數位多媒體著作權保護及所有權鑑定。
The thesis presents a robust lossless watermarking technique, based on α-trimmed mean algorithm and Support Vector Machine (SVM), for image authentication. The technique does not damage the contents of original images during watermark embedding because it first trains an SVM to memorize relationship between the watermark and the image-dependent signature, and then exploits the trained SVM to estimate the watermark. Meanwhile, its robustness can be enhanced by using α-trimmed mean operator against attacks. Experimental results demonstrate that the technique not only possesses the robust ability to resist on image-manipulation attacks under consideration but also, in average, is superior to other existing methods being considered in the paper.
誌謝 i
摘要 ii
Abstract iii
表目錄 vi
圖目錄 vii
一、緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 論文架構 3
二、文獻探討 4
2.1 離散小波轉換 4
2.1.1. Haar小波轉換 4
2.1.2. Biorthogonal 9/7 wavelet 6
2.2 α-trimmed mean 演算法 10
2.3 支向量機 11
2.3.1. 線性可分支向量機(Linear separable SVM) 13
2.3.2. 線性不可分支向量機(Linear non-separable SVM) 15
2.3.3. 非線性支向量機(Non-linear SVM) 17
2.4 數位影像浮水印 19
2.4.1. 數位影像浮水印技術回顧 19
2.4.2. 數位影像浮水印特性 23
三、提出方法 25
3.1. 架構簡介 25
3.2. 問題描述 26
3.3. 浮水印產生及記憶使用者簽章 29
3.4. 抽取使用者簽章 34
3.5. 模擬實驗結果 37
3.5.1. 挑選適合實驗參數 45
3.5.2. 強韌性比較 49
3.5.3. SVM強韌性實驗 57
四、結論及未來研究方向 61
4.1 結論 61
4.2 未來研究方向 61
參考文獻 64
附錄一 Libsvm-2.8 Tool 67
附錄二 Libsvm-mat-2.85-1 Tool 73
附錄三 本論文提出方法之系統執行畫面 79
[1]九十七年度台灣寬頻網路使用調查報告, http://www.twnic.net.tw/download/200307/200307index.shtml
[2]M.-U. Celik, G. Sharma, E. Saber and A.-M. Tekalp, "Hierarchical watermarking for secure image authentication with localization," IEEE Trans. on Image Processing, vol. 11, no. 6, pp. 585-595, 2002.
[3]A. Noore, N. Tungala and M. M. Houck, "Embedding biometric identifiers in 2D barcodes for improved security," Computers & Security, vol. 23, issue 8, pp. 679-686, 2004.
[4]J.-G. Cao, J.-E. Fowler and N.-H. Younan, "An image-adaptive watermark based on a redundant wavelet transform," Proceedings of the IEEE International Conference on Image Processing, pp. 277-280, 2001.
[5]Y. Zhao, P. Campisi and D. Kundur, "Dual domain watermarking for authentication and compression of cultural heritage images," IEEE Trans. on Image Processing, vol. 13, no. 3, 2004.
[6]K. Chan and C. Peng, Wavelets for sensing technologies, Artech House, 2003.
[7]S. Barua, J.-E. Carletta, K.-A. Kotteri and A.-E. Bell, "An efficient architecture for lifting-based two-dimensional discrete wavelet transforms," Integration, the VLSI Journal, vol. 38, pp. 341-352, 2005.
[8]Z. Guangjun, C. Lizhi and C. Huowang, "A simple 9/7-tap wavelet filter based on lifting scheme," Proceedings of the IEEE International Conference on Image Processing, vol. 2, pp. 249-252, 2001.
[9]I. Pitas and A.-N. Venetsanopoulos, Nonlinear digital filters principles and applications, Kluwer Academic Publishers, pp. 131-134, 1990.
[10]H.-H. Tsai and D.-W. Sun, "Color image watermark extraction based on support vector machine," Information Sciences, vol. 177, issue 2, pp. 550-569, 2007.
[11]A. Khan, S.-F. Tahir, A. Majid and T.-S. Choi, "Machine learning based adaptive watermark decoding in view of anticipated attack," Pattern Recognition, vol. 41, pp. 2594-2610, 2008.
[12]X.-Y. Wang, H.-Y. Yang and C.-Y. Cui, "An SVM-based robust digital image watermarking against desynchronization attacks," Signal Processing, vol. 88, pp. 2193-2205, 2008.
[13]B.-G. Mobasseri and R.-J. Berger, "A foundation for watermarking in compressed domain," IEEE Signal Processing Letters, vol. 12, no.5, 2005.
[14]C.-D Vleeschouwer, J.-F. Delaigle and B. Macq, "Circular interpretation of bijective transformations in lossless watermarking for media asset management ," IEEE Trans. on Multimedia, vol. 5, no. 1, 2003.
[15]M.-U. Celik, G. Tekalp and A.-M. Tekalp, "Lossless watermarking for image authentication: a new framework and an implementation," IEEE Trans. on Image Processing, vol. 15, no. 4, 2006.
[16]J.-M. Shieh, D.-C. Lou and H.-K. Tso, "A robust watermarking scheme for digital image using self similarity," Information Technology: Research and Education, pp. 115-119, 2005.
[17]T.-H. Chen, G.-B. Horng and W.-B. Lee, "A publicly verifiable copyright-proving scheme resistant to malicious attacks," IEEE Trans. on Industrial Electronics, vol. 52, issue 1, pp. 327-334, 2005.
[18]J. Sang and M.-S. Alam, "A neural network based lossless digital image watermarking in the spatial domain," Lecture Notes in Computer Science 3497, pp. 772-776, 2005.
[19]H.-H. Tsai, H.-C. Tseng and Y.-S. Lai, "A lossless image watermarking using support vector machine", the 17th Information Security Conference, ISC2007, Chiayi, 2007.
[20]C.-C. Chang and P.-Y. Lin, "Adaptive watermark mechanism for rightful ownership protection," The Journal of Systems and Software, vol. 81, pp. 1118-1129, 2008.
[21]C.-Y. Chang and S.-J. Su, "A neural-network-based robust watermarking scheme," IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2482-2487, 2005.
[22]G.-W. Hsu and C.-C. Wang, "MPEG-4 FGS video compression using bit-plane watermarking," the 17th Information Security Conference, ISC2007, Chiayi, pp. 553-560, 2007.
[23]D. Ye, C. Zou, Y. Dai and Z. Wang, "A new adaptive watermarking for real-time MPEG videos," Applied Mathematics and Computation, vol. 185, pp. 907-918, 2007.
[24]M. Noorkami and R.-M. Mersereau, "A framework for robust watermarking of H.264-encoded video with controllable detection performance," IEEE Trans. on Information Forensics and Security, vol. 2, pp.14-23, 2007.
[25]J. Zhang, A.-T.-S. Ho and P. Marziliano, "Robust video watermarking of H.264/AVC," IEEE Trans. on Circuits and Systems, vol. 54, pp. 205-209, 2007.
[26]StirMark Benchmark 4.0 Software available at http://www.petitcolas.net/fabien/watermarking/stirmark/index.html
[27]Checkmark Watermark Benchmarking Software available at http://watermarking.unige.ch/Checkmark/
[28]Optimark Software available at http://poseidon.csd.auth.gr/optimark/
[29]M. D. Swanson, B. Zhu, A. Tewfik and L. Boney, "Robust audio watermarking using perceptual masking," Signal Processing, vol. 66, pp. 337-355, 1998.
[30]G.-C. Langelaar, I. Setyawan, and R. L. Legendijk, "Watermarking digital image and video data," IEEE Signal Processing Magazine, vol. 17, issue 5, pp. 20 - 46, 2000.
[31]B.-S. Kim, J.-G. Choib, C.-H. Parka, J.-U. Wonc, D.-M. Kwaka, S.-K. Oha, C.-R. Kohd, and K.-H. Park, "Robust digital image watermarking method against geometrical attacks," Real-Time Imaging, vol. 9, issue 2, pp. 139 - 149, 2003.
[32]Libsvm-2.8 available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/
[33]Python available at http://www.python.org/ftp/python/2.4.3/python-2.4.3.msi
[34]Gnuplot available at ftp://ftp.gnuplot.info/pub/gnuplot/
[35]Libsvm-mat-2.85-1 available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊