跳到主要內容

臺灣博碩士論文加值系統

(44.210.151.5) 您好!臺灣時間:2024/07/13 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方俊男
研究生(外文):Chun-Nan Fang
論文名稱:自組裝分子膜之力學特性分析與實驗研究
論文名稱(外文):Analysis and experimental studies of mechanical characterization of self-assembled monolayers
指導教授:方得華方得華引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:180
中文關鍵詞:自組裝分子膜分子動力學粗晶奈米壓痕奈米磨潤學
外文關鍵詞:Self-assembled monolayerMolecular dynamicsCoarse grainNanoindentationNanoscratch
相關次數:
  • 被引用被引用:8
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文藉由分子動力學模擬自組裝分子膜吸附金薄膜表面特性,並探討奈米尺度壓痕和刮痕的變形機制及機械特性。以緊束法勢能來描述金薄膜間作用力;自組裝分子膜的結構相當複雜,利用粗晶化的模型簡化下就可以單純地以一顆顆分子來呈現為等效的分子鏈。分子鏈內部廣用勢能以描述鍵長、鍵角及扭轉角交互作用;分子鏈的非鍵結力和分子鏈吸附金薄膜採用Lennard Jones勢能。模擬結果發現;在壓痕過程中,隨著壓痕越深時,最大負載力與黏著力也隨之增加。壓痕區域隨著壓痕深度越深變的越來越明顯,而在持壓階段發生鬆弛力現象。在刮痕過程中,隨著刮痕越深時,摩擦力與正向力也隨之增加。刮痕區域隨著刮痕深度越深,導致整條鏈有脫落情形,而摩擦係數也隨刮痕深度來增加。最後,將實驗與模擬結果做一系列比較分析,探討自組裝分子膜吸附金薄膜之機械與摩擦特性。
The nanoindentation and nanoscratch of self-assembled monolayers (SAMs) chemisorbed on an Au surface are investigated by molecular dynamics (MD). This study uses the tight-binding second-moment approximation (TB-SMA) potential to describe the interaction force between Au and Au atoms. Due to the complexity of the structure of SAMs, the coarse grain equivalent scheme is treated as a single-spherical molecule to an equivalent SAMs chain. For the description of the intramolecular interactions in a SAMs chain, bond stretching potential, bending potential, and the torsion potential were adopted. The non-bonded and SAMs chemisorbed on an Au surface was adopted Lennard-Jones potential. The MD simulation is accomplished by utilizing the efficient list rule. The results showed that when the indention depth of the sample increased were observed during indentioning process, the maximum load and the adhesion were increased. The indention areas showed obvious, and the force relaxation took place at the holding process. The results showed that when the scratch depth of the sample increased were observed during scratching process, the friction force and the normal force were increased. The scratch areas showed break away, and the frictional coefficient can be defined as a value of the friction force and the normal force. The MD results will be compared with the experimental results.
摘要.................................................. i
Abstract.............................................. ii
誌謝.................................................. iii
目錄.................................................. iv
表目錄................................................ ix
圖目錄................................................ xi
符號說明.............................................. xvii
第一章 緒論........................................... 1
1.1 前言.............................................. 1
1.2 文獻回顧.......................................... 2
1.2.1 分子動力學之文獻回顧............................ 2
1.2.2 自組裝分子膜之文獻回顧.......................... 4
1.2.3 奈米壓痕之文獻回顧.............................. 5
1.2.4 奈米刮痕之文獻回顧.............................. 7
1.3 研究動機與目的 .................................... 9
1.4 本文架構.......................................... 10
第二章 理論基礎....................................... 13
2.1 分子動力學之基本理論與假設........................ 13
2.2 勢能函數介紹...................................... 13
2.2.1 二體勢能函數.................................... 14
2.2.2 多體勢能函數.................................... 15
2.3 速度分佈法則...................................... 16
2.4 原子級之應力...................................... 16
2.5 滑移向量.......................................... 17
2.6 奈米壓痕試驗之硬度與彈性模數理論建立.............. 18
第三章 分子動力學數值模擬方法......................... 27
3.1 物理模型.......................................... 27
3.1.1 壓痕模型........................................ 27
3.1.2 刮痕模型........................................ 27
3.2 勢能函數的選擇.................................... 28
3.3 Lorentz-Berelot之結合律........................... 30
3.4模擬參數與無因次化................................. 30
3.5 週期邊界條件...................................... 31
3.6 最小映像法則...................................... 31
3.7 設定初始條件...................................... 32
3.8 Rescaling方法..................................... 32
3.9 運動方程式........................................ 33
3.9.1 Gear五階預測修正法.............................. 34
3.9.2 Verlet法........................................ 35
3.10 截斷半徑法....................................... 36
3.10.1 Verlet表列法................................... 36
3.10.2 Cell link表列法................................ 37
3.10.3 Cell link表列法結合Verlet List表列法........... 37
3.11 程式流程圖....................................... 38
第四章 實驗方法及步驟................................. 48
4.1 實驗目的.......................................... 48
4.2 薄膜製作程序...................................... 48
4.2.1金薄膜製作....................................... 48
4.2.2 自組裝分子膜吸附金薄膜製作...................... 48
4.3 薄膜測厚儀........................................ 49
4.4 接觸角量測儀...................................... 49
4.5 原子力顯微鏡...................................... 50
4.6 奈米測試儀........................................ 51
4.7 奈米壓痕量測儀 .................................... 52
第五章 自組裝分子膜吸附金薄膜壓痕之模擬結果與討論..... 59
5.1 變形機制過程...................................... 59
5.2 深度效應.......................................... 60
5.3 溫度效應.......................................... 62
5.4 多層效應.......................................... 63
5.5 鏈長效應.......................................... 65
5.6 探針外型效應...................................... 66
5.7 滑移向量分析...................................... 67
第六章 自組裝分子膜吸附金薄膜刮痕之模擬結果與討論..... 90
6.1 變形機制過程...................................... 90
6.2 深度效應.......................................... 90
6.3 溫度效應.......................................... 92
6.4 速度效應.......................................... 93
6.5 鏈長效應.......................................... 94
6.6 探針外型效應...................................... 95
6.7 滑移向量分析...................................... 96
第七章 奈米壓痕與奈米刮痕實驗結果與討論............... 124
7.1 表面分析.......................................... 124
7.2 接觸角量測分析.................................... 124
7.3奈米壓痕實驗....................................... 125
7.3.1 負載效應........................................ 125
7.3.2 自組裝分子膜吸附金薄膜不同組浸泡時間與濃度效應.. 126
7.4 奈米刮痕實驗...................................... 126
7.4.1 原子力顯微鏡加工技術............................ 127
7.4.1.1 負載效應................................. 127
7.4.1.2 速度效應................................. 127
7.4.2 奈米測試儀...................................... 128
7.4.2.1 負載效應................................. 128
7.5 奈米壓痕與奈米刮痕實驗與模擬之綜合分析............ 128
第八章 結論與建議..................................... 137
8.1 結論.............................................. 137
8.2 建議與未來展望.................................... 138
參考文獻.............................................. 140
附錄A純金薄膜與自組裝分子膜吸附金薄膜之壓痕機械特性分析 ............................................. 146
附錄B壓痕器幾何關係................................... 150
Extended abstract..................................... 152
簡歷.................................................. 156
[1]D. Marinova, and M. M. Aleer, Nanotechnology, 14, 1-7, 2003.
[2]A. Kudelski, Langmuir, 19, 3805-3813, 2003.
[3]A. Kudelski, Surface Science, 502-503, 219-223, 2002.
[4]H. Hagenstrom, M. A. Schneeweiss, and D. M. Kolb, Langmuir, 15, 7802-7809, 1999.
[5]J. H. Irving, and J. G. Kirkwood, Journal of Chemical Physics, 18, 817-829, 1950.
[6]V. V. Pokropivny, V. V. Skorokhod, and A. V. Pokropivny, Materials Letters, 31, 49-54, 1997.
[7]D. Erts, A. Lohmus, R. Lohmus, H. Olin, A. V. Pokropivny, L. Ryen, and K. Svensson, Applied Surface Science, 188, 460-466, 2002.
[8]D. Christopher, R. Smith, and A. Richter, Nanotechnology, 12, 372-383, 2001.
[9]C. H. Liu, T. H. Fang, and J. F. Lin, Materials Science Engineering A, 452-453, 135-141, 2007.
[10]J. Schotz, T. Rasmussen, K. W. Jacobsen, and O. H. Nielsen, Philosophical Magazine Letters, 74, 339-344, 1996.
[11]N. Miyazaki, and Y. Shiozaki, JSME International Journal Series A, 39, 606-612, 1996.
[12]A. M. Krivtsov, and M. Wiercigroch, Materials Physics and Mechanics, 3, 45-51, 2001.
[13]K. Gall, and M. F. Horstemeyer, Journal of Engineering Materials and Technology, 122, 355-362, 2000.
[14]M. F. Horstemeyer, M. I. Baskes, V. C. Prantil, J. Philliber, and S. Vonderheide, Modelling and Simulation in Materials Science and Engineering, 11, 265-286, 2003.
[15]J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley and Sons, New York, 1992.
[16]J. Hauman, and M. L. Klein, Journal of Chemical Physics, 91, 4994-5001, 1989.
[17]J. Hauman, and M. L. Klein, Journal of Chemical Physics, 93, 7483-7492, 1990.
[18]K. J. Tupper, and D. W. Brenner, Langmuir, 10, 2335-2338, 1994.
[19]P. V. Coveney, and P. Espanol, Journal of Physics A: Mathematical and General, 30, 779-784, 1997.
[20]S. Chen, N. P. Thien, X. J. Fan, and B. C. Khoo, Journal of Non-Newtonian Fluid Mechanics, 118, 65-81, 2004.
[21]W. C. Bigelow, D. L. Pickett, and W. A. Zisman, Journal of Colloid and Interface Science, 1, 513-538, 1946.
[22]R. G. Nuzzo, and D. L. Allara, Journal of the American Chemical Society, 105, 4481-4483, 1983.
[23]A. Ulman, An Introduction to Ultrathin Organic Films From Langmuir-Blodgett to Self-Assembly, Academic Press Boston, 1991.
[24]D. L. Allara, Biosensors and Bioelectronics, 10, 771-783, 1995.
[25]B. W. Lee, and N. A. Clark, Langmuir, 14, 5495-5501, 1998.
[26]T. Ye, D. Wynn, R. Dudek, and E. Borguet, Langmuir, 17, 4497-4500, 2001.
[27]Z. F. Li, and E. Ruckenstein, Macromolecules, 35, 9506-9512, 2002.
[28]L. Hong, H. Sugimura, T. Furukawa, and O. Takai, Langmuir, 19, 1966-1969, 2003.
[29]N. Saito, Y. Wu, K. Hayashi, H. Sugimura, and O. Takai, The Journal of Physical Chemistry B, 107, 664-667, 2003.
[30]F. A. Nae, N. Saito, A. Hozumi, and O. Takai, Langmuir, 21, 1398-1402, 2005.
[31]C. A. Widrig, C. A. Alves, and M. D. Porter, Journal of the American Chemical Society, 113, 2805-2810, 1991.
[32]H. Hertz, Journal Reine und Angewandte Mathematik, 92, 156-171, 1882.
[33]I. N. Sneddon, International Journal of Engineering Science, 3, 47-57, 1965.
[34]W. C. Oliver, and G. M. Pharr, Journal of Materials Research, 7, 1564-1583, 1992.
[35]H. Jang, and D. Farkas, Materials Letters, 61, 868-871, 2007.
[36]K. Yashiro, A. Furuta, and Y. Tomita, Computational Materials Science, 38, 136-143, 2006.
[37]D. Saraev, and R. E. Miller, Acta Materialia, 54, 33-45, 2006.
[38]吳書帆,多重尺度 CGMD在奈米壓痕的應用,國立成功大學,碩士論文,2006。
[39]P. Kizler, and S. Schmauder, Computational Materials Science, 39, 205-213, 2007.
[40]Y. H. Lin, T. C. Chen, P. F. Yang, S. R. Jian, and Y. S. Lai, Applied Surface Science, 254, 1415-1422, 2007.
[41]T. H. Fang, and J. H. Wu, Computational Materials Science, doi:10.1016/j.commatsci.01.06, 2008.
[42]G. Binning, H. Rohrer, C. Gerber, and E. Weibel, Physical Review Letters, 49, 57-61, 1982.
[43]G. Binning, C. F. Quate, and C. Gerber, Physical Review Letters, 56, 930-933, 1986.
[44]C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang, Physical Review Letters, 59, 1942-1945, 1987.
[45]B. Bhushan, and V. N. Koinkar, Journal of Applied Physics, 75, 5741-5746, 1994.
[46]B. Bhushan, and V. N. Koinkar, Wear, 181-183, 360-370, 1995.
[47]B. Bhushan, and V. N. Koinkar, Wear, 180, 9-16, 1995.
[48]F. Iwata, T. Matsumoto, R. Ogawa, and A. Sasaki, Journal of Applied Physics, 38, 3936-3939, 1999.
[49]B. Bhushan, Wear, 251, 1105-1123, 2001.
[50]B. Bhushan, and V. N. Koinkar, Journal of Applied Physics, 75, 5741-5746, 1994.
[51]B. Bhushan, J. N. lsraelachvili, and U. Landman, Nature, 374, 607-616, 1995.
[52]R. Komandur, N. Chaandrasekaran, and L. M. Raff, Wear, 240, 113-143, 2000.
[53]R. Komandur, N. Chaandrasekaran, and L. M. Raff, Materials Science and Engineering A, 311, 1-12, 2001.
[54]R. Komandur, N. Chaandrasekaran, and L. M. Raff, Wear, 219, 84-97, 1998.
[55]X. Nie, P. Zhang, A. M. Weiner, and Y. T. Cheng, Nano Letters, 5, 1992-1996, 2005.
[56]Y. Z. Hu, T. Zhang, T. B. Ma, and H. Wang, Computational Materials Science, 38, 98-104, 2006.
[57]W. H. Briscoe, S. Titmuss, F. Tiberg, R. K. Thomas, D. J. McGillivray, and J. Klein, Nature, 444, 191-194, 2006.
[58]C. D. Wu, J. F. Lin, and T. H. Fang, Computational Materials Science, 39, 808-816, 2007.
[59]J. F. Lin, T. H. Fang, C. D. Wu, and K. H. Houng, Computational Materials Science, 40, 480-484, 2007.
[60]H. Wang, Y. Z. Hu, and T. Zhang, Tribology International, 40, 680-686, 2007.
[61]I. H. Sung, and D. E. Kim, Ultramicroscopy, 107, 1-7, 2007.
[62]D. Cheng, Z. J. Yan, and L. Yan, Thin Solid Films, 515, 3698-3704, 2007.
[63]T. H. Fang, C. H. Liu, S. T. Shen, S. D. Prior, L. W. Ji, and J. H. Wu, Applied Physics A - Materials Science and Processing, 90, 753-758, 2008.
[64]R. J. Arsenault, and J. R. Beeler, Computer Simulation in Material Science, ASM International, USA, 1988.
[65]R. Smith, and M. Jakas, Atomic and Ion Collisions in Solids and at Surfaces: Theory, Simulation and Application, Cambridge University Press, USA, 1997.
[66]S. Erkoc, Annual Reviews of Computational IX, World Scientific Publishing Company, Singapore, 2001.
[67]J. E. Lennard-Jones, Proceedings of the Royal Society of London Series A, 106, 441-463, 1924.
[68]L. A. Girifalco, and V. G. Weizer, Physical Review, 114, 687-690, 1959.
[69]V. Rosato, M. Guillope, and B. Legrand, Philosophical Magazine A, 59, 321-336, 1989.
[70]C. William Gear Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall PTR, Upper Saddle River, New Jersey, 1971.
[71]J. F. Lutsko, Journal of Applied Physics, 64, 1152-1154, 1988.
[72]H. S. Park, and J. A. Zimmerman, Scripta Materialia, 54, 1127-1132, 2006.
[73]G. M. Pharr, W. C. Oliver, and F. R. Brotzen, Journal of Materials Research, 7, 613-617, 1992.
[74]I. N. Sneddon, International Journal of Engineering Society, 3, 47-57, 1965.
[75]R. B. King, International Journal of Solids and Structures, 23, 1657-1664, 1987.
[76]A. C. Fischer-Cripps, Journal of Materials Research, 16, 2149-2157, 2001.
[77]A. C. Fischer-Cripps, Nanoindentation, Springer-Verlag, New York, 2002.
[78]J. B. Pethica, R. Hutchings, and W. C. Oliver, Philosophical Magazine A, 48, 593-606, 1983.
[79]J. Knap, and M. Ortiz, Journal of the Mechanics and Physics of Solids, 49, 1899-1923, 2001.
[80]K. C. Kwon, and S. K. Youn, International Journal of Solids and Structures, 43, 7450-7481, 2006.
[81]R. Delgado-Buscalioni, and P. V. Coveney, Physica A, 362, 30-35, 2006.
[82]D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
[83]D. Frenkel, and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 1996.
[84]陳俊豪,分子薄膜對光學鏡片黏附、疏水性與透射性質之影響,國立虎尾科技大學,碩士論文,2007。
[85]張峻嘉,多層薄膜之分子模擬及實驗研究,私立南台科技大學,碩士論文,2005。
[86]林彥宏,奈米壓痕之表面層效應與結構變化探討,國立中正大學,碩士論文,2006。
[87]呂振榮,滑動粗糙面間摩擦理論之分子動力模擬與實驗驗證,國立成功大學,碩士論文,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊