(3.239.192.241) 您好!臺灣時間:2021/03/02 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宜澤
研究生(外文):I-TSE CHEN
論文名稱:閘極矽化鎳的電性與物性分析
論文名稱(外文):Electrical and Physical Properties of Ni-FUSI Gate Electrode
指導教授:譚湘瑜
指導教授(外文):S.Y.Tan
學位類別:碩士
校院名稱:中國文化大學
系所名稱:材料科學與奈米科技研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:108
中文關鍵詞:高介電常數材料矽化鎳蕭特基二極體二次退火電流-電壓曲線
外文關鍵詞:High-KNiSiSchottky diodeSecond annealingI-V curve
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
藉由二氧化矽當作閘極氧化層的半導體製程方式,已不符現今半導體界的使用,在眾多的文獻中,都以研究取代二氧化矽的新材料,以利在氧化層厚度減少時,還有足夠的電容值,減少漏電流的產生,並避免穿隧效應的產生。
本論文專注在改變閘極氧化層與金屬閘極之材料。閘極氧化層現今都以高介電常數材料為主,而在所有高介電常數的材料中,以鉿化物為多數人所討論的材料。至於,金屬閘極是以矽化鎳化物為主要的材料來取代舊有的多晶矽等。
本實驗的物性製程主要是以NiSi/SiO2/Sub-Si、NiSi/HfO2/Sub-Si以及NiSi/HfSiO/Sub-Si的結構來討論,而二氧化鉿(HfO2)與矽氧化鉿(HfSiO)則為主要取代二氧化矽(SiO2)的材料,NiSi/SiO2/Sub-Si則為對照組,藉以完成製程。實驗過程中,在沉積完氧化層材料與多晶矽之後,將As離子摻雜到多晶矽內,再藉由金屬物理氣相沉積(Metal-PVD)沉積金屬鎳在多晶矽上,並做退火的動作,以完成其矽化鎳化合物(Ni-rich)的形成,最後再以二次退火的方式來穩定矽化鎳的相變。試片做完後,以金屬四點探針量測其片電阻值;原子力電子顯微鏡AFM知道矽化鎳的表面結塊狀況;穿透式電子顯微鏡TEM可觀測NiSi/SiO2/Sub-Si、NiSi/HfO2/Sub-Si以及NiSi/HfSiO/Sub-Si的剖面結構狀態;X光繞射儀則可以分析薄膜矽化鎳所含的成份,還有藉由X光光電子能譜XPS來瞭解材料本身其鍵結狀況。
電性製程以蕭特基二極體為結構,結構上只有NiSi/Sub-Si,首先在矽晶圓上先完成LOCOS製程,隨後配合光罩、曝光顯影等工具來完成多晶矽與金屬鎳的沉積,再用退火的方式來形成矽化鎳,最後再沉積閘極金屬層,藉此來完成整個電性試片製程。完成電性試片後,再以安捷倫4155C來量測電流-電壓(I-V)曲線,並計算出矽化鎳在不同離子摻雜的功函數。
由結果研判,當二次退火溫度達850oC時,矽化鎳就會轉變成高電阻值且富矽的NiSi2,矽化鎳的表面粗操度也會增加,代表著矽化鎳在高溫時,會產生結晶現象。氧化層與離子摻雜對於減緩NiSi2的形成,有著降低電阻值與粗操度的功用。至於電性試片則是多晶矽經過了BF2、As、P、N四種離子以及不摻雜離子至多晶矽內,其矽化鎳的功函數分別是4.571 eV、4.445 eV、4.475 eV、4.553eV、4.566eV,NiSi2的功函數分別是4.593eV、4.448eV、4.456eV、4.576eV、4.591eV。
經由實驗結果得知,HfSiO與離子摻雜可以有效的減緩NiSi2的形成,只要能拖延NiSi2的形成,使得元件可以在更高的溫度下製程與運作,就可以運用於更高效能元件內。
The thermal stability and phase characteristics involved in processing nickel silicided films formed on three different gate dielectric layers (SiO2, HfO2, and HfSiO) were investigated. The electrical properties and surface morphology of Ni-silicides formed by Ni-Si solid-state reaction were examined by X-ray diffraction (XRD), sheet resistance, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM) and current-voltage (I-V) curves. Results show that the Ni-Silicide formation undergoes a phase, which strongly dependence on annealing temperature regardless underlying gate dielectric materials. It has been found that a mixed-phase of Ni2Si, NiSi and NiSi2 was commonly observed during phase transformation. A unique integration process was developed to achieve NiSi phase stabilize at temperature 850oC, which proved to delay the conversion of intermediate silicide phases to its final phase (NiSi2) effectively. Work function of NiSi are 4.571 eV, 4.445 eV, 4.475 eV, 4.553eV, 4.566eV of BF2, As, P, N, Un-Doped, and NiSi2 are 4.593eV, 4.448eV, 4.456eV, 4.576eV, 4.591eV. The focus of present work is to facilitate the correlations of Ni-Si phase transformation with its electrical and morphological properties.
中文摘要------------------------------------------------------------------------Ⅰ
英文摘要------------------------------------------------------------------------Ⅲ
致謝------------------------------------------------------------------------------Ⅳ
目錄------------------------------------------------------------------------------Ⅵ
表目錄---------------------------------------------------------------------------Ⅷ
圖目錄---------------------------------------------------------------------------Ⅸ
第一章 前言
1-1. 矽化鎳的發展與特性------------------------------------------------ 1
1-2. 實驗動機-高介電常數材料對矽化鎳的影響與否-------------- 2
1-3. 實驗動機-討論矽化鎳的功函數----------------------------------- 3
1-4. 計算矽化鎳功函數的方法------------------------------------------ 4
1-5. 論文架構--------------------------------------------------------------- 6
第二章 實驗製程與分析方法
2-1. 實驗製程
2-1-1. 物性製程--------------------------------------------------------- 12
2-1-2. 電性製程--------------------------------------------------------- 15
2-2. 分析原理與方法
2-2-1. 金屬膜四點探針 Metal Four-Point Probe ------------------ 19
2-2-2. 原子力電子顯微鏡AFM -------------------------------------- 21
2-2-3. X光繞射儀XRD --------------------------------------------- 23
2-2-4. X光光電子能譜術XPS ------------------------------------- 25
2-2-5. 穿透式電子顯微鏡TEM -------------------------------------- 27
2-2-7. 電流電壓電性量測系統4155C ------------------------------ 29
2-2-8. ISE-TCAD模擬軟體 ---------------------------------------- 29
第三章 矽化鎳的物性分析
3-1. 簡介--------------------------------------------------------------------- 41
3-2. 物性分析
3-2-1. 金屬膜四點探針與原子力電子顯微鏡分析---------------- 42
3-2.2 X光繞射儀分析-------------------------------------------------44
3-2.3 X光光電子能譜儀分析--------------------------------------- 46
3-2.4 穿透式電子顯微鏡物性分析--------------------------------- 48
3-3. 結果與討論------------------------------------------------------------ 49
第四章 矽化鎳的電性分析
4-1. 簡介--------------------------------------------------------------------- 91
4-2. 電性分析
4-2-1 模擬出所摻雜離子的功函數-----------------------------------92
4-2-2順向電流密度-外加電壓曲線---------------------------------- 92
4-3. 結果與討論------------------------------------------------------------ 94
第五章 結論與未來展望
5-1. 總結-------------------------------------------------------------------- 100
5-2. 未來展望-------------------------------------------------------------- 101
參考文獻------------------------------------------------------------------------102
個人基本資料與期刊著作-------------------------------------------------- 107
[1] Jun Yuan ; Woo, J.C.S , “Tunable Work Function in Fully Nickel-Silicided Polysilicon Gates for Metal Gate MOSFET Applications” , Electron Device Letters, IEEE , Volume 26 , Issue 2 , Feb. 2005 Page(s) : 87-89.
[2] van Dal, M.J.H ; Pourtois, G ,et al. , “Effect of SIIS on Work Function of Self-Aligned PtSi FUSI Metal-Gated Capacitors” , Electron Devices, IEEE Transactions on Volume 53 , Issue 5 , May 2006 Page(s) : 1180- 1185.
[3] A. Veloso , T. Hoffmann , A. Lauwers ,et al. , “Advanced CMOS device technologies for 45nm node and below” , Science and Technology of Advanced Materials, Volume 8, Issue 3, April 2007, Pages 214-218.
[4] Moon Sig Joo ; Byung Jin Cho ,et al. , “Stoichiometry Dependence of Fermi-Level Pinning in Fully Silicided(FUSI) NiSi Gate on High-K Dielectric” , Electron Device Letters, IEEE , Volume 26 , Issue 12 , Dec. 2005 Page(s) : 882-884.
[5] Sim, J.H. ; Wen, H.C. , et al. , “Dual Work Function Metal Gates Using Full Nickel Silicidation of Doped Poly-Si” , Electron Device Letters, IEEE , Volume 24 , Issue 10 , Oct. 2003 Page(s) : 631-633.
[6] Polishchuk, I. ; Ranade, P. , et al. , “Dual Work Function Metal Gate CMOS Transistors by Ni-Ti Interdiffusion” , Electron Device Letters, IEEE , Volume 23 , Issue 4 , April 2002 Page(s) : 200-202.
[7] Zhu Shi-Yang , Ru Guo-Ping , Zhou Jia , Huang Yi-Ping , “I-V-T studies on Ni-silicide/n-Si(100) contacts formed by Ti-Ni-Si solid state reaction” , 2005 Chin. Phys. Soc. And IOP Publishing Ltd , Vol. 14 , No. 8 , August 2005.
[8] Bongmook Lee ; Biswas, N. ; Novak, S.R. ; Misra, V. , “Characteristics of Ni/Gd FUSI for NMOS Gate Electrode Applications” , Electron Device Letters, IEEE , Volume 28, Issue 7, July 2007 Page(s):555-557.
[9] Shiyang Zhu , R. L. Van Meirhaeghe , S. Forment , Guoping Ru , Bingzong Li , “Effects of the annealing temperature on Ni silicide/n-Si(100) Schottky contacts” , Solid-State Electronics , Volume 48 , Issue 1 , January 2004 , Pages 29-35.
[10] 許振嘉著 , “近代半導體材料的表面科學基礎”,北京大學出版社 P305 , 2002。
[11] 陳宜澤、馮舉威、陳信宏、林珮洵、譚湘瑜、宋金龍、吳文發, “Formation and Simulation of Hf-based Gate Stacks”, MRS-T Annual Meeting, 2007. Page(s):127.
[12] Ravi M. Todi , Matthew S. Erickson , Kalpathy B. Sundaram , Katayun Barmak , Kevin R. Coffey , “Comparison of the Work Function of Pt–Ru Binary Metal Alloys Extracted From MOS Capacitor and Schottky-Barrier-Diode Measurements” , IEEE TRANSACTIONS ON ELECTRON DEVICES , Vol. 54 , No. 4 , APRIL 2007.
[13] Huajie Zhou , Qiuxia Xu , “Dual-work-function Modulation for Ni-FUSI metal gate CMOS Technology” , Solid-State and Integrated Circuit Technology, 2006. ICSICT '06. 8th International Conference on Oct. 2006 Page(s) : 430-432.
[14] Peiqi xuan , Bokor, J. , “Investigation of NiSi and TiSi as CMOS gate materials” , IEEE Electron Device Letters , Vol. 24 , No. 10 , Oct. 2003.
[15] D.S Yu , IEEE Electron Device Lett., Vol. 24 , 739(2003) .
[16] Z. Krivokapic , et al. , 2002 IEDM.
[17] Kedzierski , J., IEDM . 2003 p.13.3.3 - 13.3.4.
[18] J.H.Sim , et al. , IEEE Electron Device Letters , Vol. 24 , No. 10 , Oct. 2003.
[19] M.Qin , Electrochem . Soc. , 148 , G271 (2001) .
[20] Pawlak, M.A. ; Lauwers, A. ,et al. , “Modulation of the Workfunction of Ni Fully Silicided Gates by Doping : Dielectric and Silicided Phase Effects” , Electron Device Letters, IEEE , Volume 27 , Issue 2 , Feb. 2006 Page(s) : 99-101.
[21] C. Cabral, Jr., Kedzierski, B. Linder, S. Zafar, V. Narayanan, et al. , “Dual Workfunction Fully Silicided Metal Gates”, 2004 IEEE, 2004 Symposium on VLSl Technology Digest of Technical Papers, P181-182.
[22] Sze S. M., “Physics of semiconductor devices” , by Wiley , New York , 1936.
[23] 李嗣涔、管傑雄、孫台平和著, “半導體元件物理”, 1995。
[24] A.R. Saha , S. Chattopadhyay , C.K.Maitti , “Contact metallization on strained-Si” , Solid State Electronics 48 (2004) 1391-1399.
[25] Y.-L.Jiang , G-P. Ru and B.-Z. Li , “Ramp rate dependence of NiSi formation studied by silicided Schotty contact , ELECTRONICS LETTERS , 20th , Vol. 41 ,No. 2 , January 2005.
[26] L.E Terry , Jack Saltich , “Schottky barrier heights of nickel- platinum silicide contacts on n-type Si” , Applied Physics Letters , Vol.28 , No.4 , 15 Feb. 1976.
[27] Sze S. M., “Semiconductor Devices Physics and Technology” , 2nd Ed, by Wiley, New York, 2002.
[28] Michael Quirk, Julian Serda, “Semiconductor Manufacturing Tech.”, 3nd ED , 2003.
[29] Dieter K. Schroder, “Semiconductor Material and Device Characterization”, 2006.
[30] 汪建民,”材料分析 Materials Analysis”, 1998 中國材料科學學會。
[31] 許樹恩,吳泰伯, “X光繞射原理與材料結構分析” , 精密儀器發展中心, 1993。
[32] Robert Doering Y.N. , “Semiconductor Manufacturing Technology” , 2nd ED , by Taylor , Francis Group , 2008.
[33] D.Briggs and M.P.Seah, ”Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy” , 1983 by Hohn Wiley & Sons Ltd..
[34] John F.Watts and John Wolstenholme , “An Introduction to Surface Analysis by XPS and AES” , 2003 by Hohn Wiley & Sons Ltd.
[35] S.S.lyer and A.J.Auberton-Herve , “Silicon Wafer Bonding Technology for VLSI and MEMS applications” , by Institution of Electrical Engineers , London , c2002.
[36] Kazuo Tsutsui , Ruifei Xiang , “Irregular Increase in Sheet Resistance of Ni Silicides at Temperature Range of Transition from NiSi to NiSi2” , 2006 IEEE.
[37] PCPDFWIN manual.
[38] F.Qin , J.W.Anderegg , C.J.Jenks , B.Gleeson , D.J.Sordelet , P.A.Thiel , “X-ray photoelectron spectroscopy studies of the early-stage oxidation behavior of (Pt, Ni)3Al(111) surfaces in air” , Surface Science 602 (2008) 205-215.
[39] Izabela Czekaj , Francois Loviat , Fabio Raimondi , Jorg Wambach , Serge Biollaz , Alexander Wokaun , “Characterization of surface process at the Ni-based catalyst during the methanation spectroscopy(XPS)” , Applied Catalysis A: General 329 (2007) 68-78.
[40] M.Garcia-Mendez , F.F.Castillon , G.A.Hirata , M.H.Farias , M.H.Farias , G.Beamson , “XPS and HRTEM characterization of cobalt-nickel silicide thin films” , Applied Surface Science 161 (2000) 61-73.
[41] Tan, S.Y.; Chen, I-Tse; Feng, Chu-Wei; Chen, Hsing-Hung, “Investigating Physical and Electrical Changes in Ni-FUSI/SiO2 Gate Stacks”, Electron Devices and Solid-State Circuits, 2007. EDSSC 2007. IEEE Conference on 20-22 Dec. 2007 Page(s):641– 644.
[42] DIOS Manual , ISE-TCAD 10.0
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔