(3.237.97.64) 您好!臺灣時間:2021/03/03 07:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡育倫
研究生(外文):Yu-Lun Tsai
論文名稱:以UV-LED/TiO2系統偵測一氧化碳氣體之研究
論文名稱(外文):The study of CO gas measurement by UV-LED/TiO2 system
指導教授:王國華王國華引用關係蘇平貴蘇平貴引用關係
指導教授(外文):Kuo-Hua WangPi-Guey Su
學位類別:碩士
校院名稱:中國文化大學
系所名稱:勞動學研究所
學門:社會及行為科學學門
學類:綜合社會及行為科學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:94
中文關鍵詞:一氧化碳氣體感測器UV-LED二氧化鈦
外文關鍵詞:Carbon MonoxideGas SensorUV-LEDTitanium Dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:346
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以電漿輔助化學氣相沉積(PECVD)法製備二氧化鈦觸媒薄膜於矽晶片與氧化鋁基板上,製備薄膜之控制因子包括緞燒處理、氧氣流量及電漿功率,並經由 XRD 及 FESEM 探討不同製備條件之觸媒薄膜表面特性。製備完成之二氧化鈦觸媒薄膜進一步組裝完成 UV-LED / TiO2 氣體感測器模組,以一氧化碳進行氣體感測實驗,藉此尋找出最佳製備條件之 UV-LED / TiO2 氣體感測器模組及其啟動時間。
實驗結果發現,以 Scherrer 公式估算觸媒薄膜其二氧化鈦顆粒均達奈
米級材料粒徑尺寸。適當的氧氣流量及電漿功率且經緞燒處理過程,將有助於二氧化鈦銳鈦礦晶相的生成。利用 UV-LED / TiO2 氣體感測器模組偵測一氧化碳,在相對溼度 50 %、CO 濃度 20~500 ppm 條件下,製備條件為氧氣流量 70 mL / min、基板溫度 500 ℃、電漿功率 100 W、鍍膜時間 60 min、經 700 ℃ 進行 12 hr 鍛燒處理之氣體感測器,於開始測試 1 min 時,即可達迴歸係數 0.9991 的良好線性關係,呈現反應速率快且感應時間短之結果;在相對溼度 50 %~80 % 條件下,其受到溼度效應造成的影響較小,迴歸係數變化趨勢小於其他氣體感測器,大致而言仍維持良好的線性關係。在本研究製備條件中以鍛燒處理與否及施加的電漿功率兩個變項,對二氧化鈦薄膜生成及 CO 氣體感測反應影響最大。
This investigation was to prepare TiO2 catalyst films by Plasma-Enhanced Chemical Vapor Deposition (PECVD) method. The prepared parameters in this study included annealing treatment, flow rate of oxygen and plasma power. Moreover, the prepared catalyst films were characterized by X-ray diffraction patterns (XRD), Field Emission Scanning Electron Microscopy (FESEM), and assembled with UV-LED to make UV-LED/TiO2 gas sensor modules that examined with CO.
From the results, the particle sizes of TiO2 were nano-scale by the estimation of Scherrer equation. The anatase crystal of TiO2 was promoted with appropriate flow rate of oxygen, plasma power and annealing treatment. The regression coefficient of UV-LED/TiO2 gas sensor modules prepared with 70 mL/min of O2 flow rate, 500 ℃ of substrate temperatures, 100 W of plasma power, and 700 ℃ of annealing temperature was 0.9991 at one minute of start time under relative humidity 50 % and CO concentration 20-500 ppm. Moreover, this gas sensor module was less affected than the others within the relative humidity 50-80 %.
第一章 緒論 1
1-1 研究動機 1
1-2 研究內容 2
第二章 文獻回顧 4
2-1 一氧化碳之危害 4
2-1-1 一氧化碳之特性 4
2-1-2 一氧化碳主要來源與中毒事故案例 6
2-1-3 一氧化碳中毒之臨床症狀 10
2-1-4 一氧化碳中毒之預防 10
2-2 氣體感測器應用技術 12
2-2-1 氣體感測器之研究發展 14
2-2-2 一氧化碳氣體感測器 16
2-3 UV / TiO2 反應機制 20
2-3-1 光催化反應 21
2-3-2 TiO2 之結構與特性 24
2-4 發光二極體(LED)原理 26
2-5 電漿輔助化學氣相沉積法原理 29
2-5-1 電漿原理簡介 29
2-5-2 電漿輔助化學氣相沉積法 30
2-5-3 PECVD 沉積 TiO2 之相關文獻 32
2-6 氣體感測器之影響因子 33
2-6-1 材料之晶粒尺寸與表面催化 33
2-6-2 氧氣 35
2-6-3 溼度 35
第三章 實驗方法與材料 37
3-1 實驗材料 37
3-1-1 PECVD 鍍膜系統 37
3-1-2 感測器測試系統 37
3-2 實驗流程 38
3-3 電漿輔助化學氣相沉積法(PECVD)鍍膜 39
3-3-1 PECVD 系統 39
3-3-2 實驗分析儀器 40
3-3-3 PECVD 反應氣體裝置 41
3-3-4 TiO2 觸媒薄膜之製備 42
3-4 氣體感測器測試 42
3-4-1 感測系統設備 42
3-4-2 測試條件 43
第四章 結果與討論 51
4-1 TiO2 薄膜之 XRD 探討 51
4-1-1 鍛燒處理之影響 51
4-1-2 氧氣流量之影響 53
4-1-3 電漿功率之影響 53
4-1-4 小結 56
4-2 TiO2 薄膜之 FESEM 探討 57
4-2-1 鍛燒處理之影響 57
4-2-2 氧氣流量之影響 58
4-2-3 電漿功率之影響 58
4-2-4 小結 62
4-3 背景實驗 62
4-4 氣體感測器功能測試結果 66
4-4-1 氣體感測器回應值計算 66
4-4-2 不同製備條件之氣體感測器測試結果 67
4-4-3 溼度對氣體感測器偵測 CO 之影響 75
第五章 結論與建議 84
5-1 結論 84
5-2 建議 84
參考文獻 86
1.Cunnington, A.J. and Hormbrey, P.,“Breath Analysis to Detect Recent Exposure to Carbon Monoxide,”Postgraduate Medical Journal, Vol. 78, pp. 233-237, 2002.
2.Ahn, K.H., Park, Y.B. and Park, D.W.,“Kinetic and mechanistic study on the chemical vapor deposition of titanium dioxide thin films by in situ FT–IR using TTIP,”Surface & Coatings Technology, Vol. 171, pp. 198-204, 2003.
3.Ernst, A. and Zibrak, J.D.,“Carbon Monoxide Poisoning,”The New England Journal Of Medicine, Vol. 339, No. 22, pp. 1603-1608, 1998.
4.「物質安全資料表」,勞工委員會勞工安全衛生研究所。
5.許木嶺、錢新南,「一氧化碳中毒」,國防醫學,第31卷,第3期,195-201頁,2000。
6.吳鴻鈞、歐新榮,「隧道、水溝、涵洞、槽體等侷限空間作業,請預防使用汽柴油幫浦排出廢氣,導致勞工一氧化碳中毒」,勞工委員會勞工安全衛生研究所,http://www.iosh.gov.tw/data/f9/warn12.htm.
7.The Center To Protect Workers' Rights (CPWR), Welding Fumes and Gases:Safety Tip of the Month, N.A.A.C.W. Construction Job Hotsheet, 1997.
8.勞工安全衛生研究所-新聞稿,http://www.iosh.gov.tw/frame.htm.
9.自由時報電子新聞網,
http://www.libertytimes.com.tw/2004/new/may/9/today-so8.htm.
10.大紀元,http://www.epochtimes.com/b5/6/1/31/n1208016.htm.
11.ETtoday,http://www.ettoday.com/2008/01/03/138-2211170.htm.
12.Raub, J.A., Mathieu-Nolf, M. and Thom, S.R.,“Carbon Monoxide Poisoning-a Public Health Perspective,”Toxicology, Vol. 145, pp. 1-14, 2000.
13.歐新榮,「侷限空間作業之一氧化碳中毒案例剖析」,勞工安全衛生簡訊第65期,勞工安全衛生研究所,2004。
14.Walker, E. and Hay, A.,“Carbon Monoxide Poisoning,”British Medical Journal, Vol. 319, pp. 1082-1083, 1999.
15.OSHA fact sheet,“Carbon Monoxide Poisoning,”Washington D.C.: Department of Labor, 1996.
16.Tourmer, G., Pijolat, C., Lalauze, R. and Patissier, B.,“Select detection of CO and CH4 with gas sensors using SnO2 doped with palladium,” Sensors and Actuators B: Chemical, Vol. 26-27, pp. 24-28, 1995.
17.Li, L., Wlodarski., W. and Ippolito, S.,“Platinum resistive film CO sensor without selective layer,”Sensors and Actuators B: Chemical, Vol. 111-112, pp. 130-134, 2005.
18.Youn-Ki Jun, Hyun-Su Kim, Jong-Heun Lee and Seong-Hyeon Hong,“CO sensing performance in micro–arc oxidized TiO2 films for air quality control,”Sensors and Actuators B: Chemical, Vol. 120, pp. 69-73, 2006.
19.Ren-Jang Wu, Jhih-Gan Wu, Tung-Kang Tsai and Chuin-Tih Yeh,“Use of cobalt oxide CoOOH in a carbon monoxide sensor operating at low temperatures,”Sensors and Actuators B: Chemical, Vol. 120, pp. 104-109, 2006.
20.大場良次著,蘇奕肇譯,智慧型感測器,台北:全華科技圖書股份有限公司,1991。
21.陳一誠、劉旭禎,「一氧化碳氣體感測技術」,工業材料雜誌,第227期,68-80頁,2005。
22.眭曉林,「固態化學感測元件之積體化設計」,材料與社會,第60期,56-61頁,1991。
23.Ferroni, M., Guidi, V. and Martinelli, G.,“Characterization of a nanosized TiO2 gas sensor,”Nanostructured Materials, Vol. 7, NO. 7, pp. 709-718, 1996.
24.Hernandez-Ramirez, F., Tarancon, A., Casals, O., Arbiol, J., Romano-Rodriguez, A. and Morante, J.R.,“High response and stability in CO and humidity measures using a single SnO2 nanowire,”Sensors and Actuators B: Chemical, Vol. 121, pp. 3-17, 2007.
25.Hong-Ming Lin, Chiun-Yen Tung and Chi-Ming Hsu,“Catalytic properties of nanocrystalline WO3-X, Pt/WO3-X, and Pd/WO3-X particles,”Journal of materials research, Vol. 10, No. 5, pp 1115-1119, 1995.
26.Malchenko, S. N., Lychkovsky, Y. N. and Baykov, M. V.,“In2O3–based gas sensors,”Sensors and Actuators B: Chemical, Vol. 13, pp. 159-161, 1993.
27.Si, S., Li, C., Wang, X., Peng, Q. and Li, Y.,“Fe2O3 / ZnO core–shell nanorods for gas sensors,”Sensors and Actuators B: Chemical, Vol. 119, pp. 52-56, 2006.
28.Frank, J., Fleischer, M. and Meixner, H.,“Electrical doping of gassensitive, semiconducting Ga2O3 thin films,”The 8th international conference on solid-state Sensors and Actuators, pp. 850-853, 1995.
29.Barbi, G. B., Santos, J. P., Serrini, P., Gibson, P. N., Horrillo, M. C. and Manes, L.,“Ultrafine grain–size tin-oxide films for carbon monoxide monitoring in urban environments,”Sensors and Actuators B: Chemical, Vol. 25, pp. 559-563, 1995.
30.Chung-Yu Cheng Huang and Tzong-Luen Wang,“Carbon Monoxide ntoxication,”Annals of Disaster Medicine, Vol. 4, pp. 8-17, 2005.
31.Bourrounet, B., Talou, T. and Gaset, A.,“Application of a multi–gas–sensor device in the meat industry for boar-taint detection,” Sensors and Actuators B: Chemical, Vol. 27, pp. 250-254, 1995.
32.陳憶萍,真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,碩士論文,國立成功大學化學工程研究所,2004。
33.陳一誠,「金屬氧化物半導體型氣體感測器」,材料與社會,第68期,第62-66頁,1992。
34.吳仁彰,「固態電解質式一氧化碳感測器之理論研究」,量測資訊,第73期,第44-47頁,2000。
35.孫煜琅,固態氟化鑭電解質在常溫型感測器之應用,碩士論文,國立成功大學化學工程學系,2002。
36.曾明漢,「觸媒燃燒型氣體感測器」,材料與社會,第68期,57-61頁,1992。
37.Marugan, J., Hufschmidt, D., Lopez-Munoz, Maria-Jose., Selzer, V. and Bahnemann, D.,“Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts,” Applied Catalysis B: Environmental, Vol. 62, pp. 201-207, 2006.
38.Linsebigler, A. L., Lu, G. and Yates, Jr., J. T.,“Photocatalysis on TiO2 surface : Principles, Mechanisms, and Selected Results,”Chemical Reviews, Vol. 95, pp. 735-758, 1995.
39.Sakta, T., “Heterogeneous Photocataltsis at Liquid–Solid Interfaces,” in Photocatalysis – Fundamentals and Applications, edited by Serpone, N. and Pelizzetti, E. Pressed by John Wiley & Sons, Inc., 1989.
40.Rao, N. N. and Dube, S.,“Photocatalytic degradation of mixed surfactants and some commercial soap / detergent products using suspended TiO2 catalysts,”Journal of Molecular Catalysis A: Chemical, Vol. 104, pp. 197-199, 1996.
41.Richardson, S. D., Thruston, Jr., A. D., Collette, T. W., Patterson, K. S., Lykins, Jr., B. W. and Ireland, J. C.,“Identification of TiO2 / UV disinfection byproducts in drinking water,”Environmental Science & Technology, Vol. 30, pp. 3327-3334, 1996.
42.Ahmed, M. S. and Attia, Y. A.,“Aerogel materials for photocatalytic detoxification of cyanide wastes in water,”Journal of Non-Crystalline Solids, Vol. 186, pp. 402-407, 1995.
43.Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W.,“Environmental applications of semiconductor photocatalysis,” Chemical Reviews, Vol. 95, pp. 69-96, 1995.
44.陳富亮,最新奈米光觸媒應用技術,台北:普林斯頓國際有限公司,2003。
45.Fujishima, A., Rao, T. N. and Tryk, D. A.,“Titanium Dioxide Photocatalysis,”Journal of Photochemistry and Photobiology C: Photochemistry Review, Vol. 1, pp. 1-21, 2000.
46.黃相舜,電漿化學氣相沉積二氧化鈦薄膜之特性研究,碩士論文,國立成功大學材料科學及工程學系,2000。
47.Guillard, C., Debayle, D., Gagnaire, A., Jaffrezic, H. and Herrmann, J. M.,“Physical properties and photocatalytic efficiencies of TiO2 films prepared by PECVD and sol-gel methods,”Materials Research Bulletin, Vol. 39, pp. 1445-1458, 2004.
48.Diebold, U.,“The surface science of titanium dioxide,”Surface Science Reports, Vol. 48, pp. 53-229, 2003.
49.Zheng, L. Xu, M. and Xu, T.,“TiO2-x thin films as oxygen sensor,” Sensors and Actuators B: Chemical, Vol. 66, pp. 28-30, 2000.
50.林志勳,「全球發光二極體市場發展趨勢」,工業材料雜誌,第246期,第131-135頁,2007。
51.伊東新太郎著,鄭振東譯,LED 淺說光電技術入門,台北:建宏出版社,1992。
52.吳盛豐,廖秋峰,「LED 照明光源展望(五):確保使用壽命長久」,工業材料雜誌,第229期,第127-130頁,2006。
53.莊允中,電漿技術應用市場專題研究,經濟部產業技術資訊服務推廣計畫,高雄:金屬中心,2000。
54.Roth, J.R.,“Industrial plasma engineering,”Iop Publishing Ltd London, Chapter 10, pp. 352-390, 1995.
55.Grill, A.,“Cold Plasma in Materials Fabrication,”IEEE Press, Chapter 1-2, pp. 1-45, 1994.
56.Lieberman, M. A., Lichtenberg, A. J. and Wiley, J.,“Principles of plasma Discharges and Materials Processing,”Wiley-Interscience, 1st edition, 1994.
57.林士淵,電漿輔助化學氣相沉積二氧化矽薄膜之內應力分析,碩士論文,國立成功大學機械工程學系,2000。
58.Chang, H. L. M., You, H., Gao, Y., Guo, J., Foster, C. M., Chiarello, R. P., Zhang, T. J. and Lam, D. J.“Structure properties of epitaxial TiO2 films grown on sapphire (1120) by MOCVD,”Journal of Materials Research, Vol. 7, pp. 2495-2506, 1992.
59.Battiston,G.A., Gerbasi, R., Gregori, A., Porchia, M., Cattarin, S. and Rizzi, G.A.,“PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,”Thin Solid Films, Vol. 371, pp. 126-131, 2000.
60.Dalapati, G.K., Chatterjee, S., Samanta, S.K. and Maiti, C.K.,“Electrical characterization of low temperature deposited TiO2 films on strained-SiGe layers,”Applied Surface Science, Vol. 210, pp. 249-254, 2003.
61.Martin, N., Baretti, D., Rousselot, C. and Rauch, Jean-Yves,“The effect of bias power on some properties of titanium and titanium oxide films prepared by r.f. magnetron sputtering,”Surface & Coatings Technology, Vol. 107, pp. 172-182, 1998.
62.Williams, G. and Coles, G. S. V.,“The gas sensing potential of nanocrystalline tin dioxide produced by a laser ablation technique,”MRS. Bulletin, Vol. 24, pp. 25-29, 1999.
63.Sakai, H., Kawahara, H., Shimazaki, M. and Abe, M.,“Preparation of ultrafine titanium dioxide particles using hydrolysis and condensation reactions in the inner aqueous phase of reversed micelles:Effect of alcohol addition,”Langmuir, Vol. 14, pp. 2208-2212, 1998.
64.Zhang, Q. Gao, L. and Guo, J.,“Effects of Calcinations on the Photocatalytic Properties of Nanosized TiO2 Powders TiCl4 Hydrolysis,” Applied Catalysis B: Environmental, Vol. 26, pp. 207-215, 2000.
65.Yu, J., Xiong, J., Cheng, B. and Liu, S., “Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity,” Applied Catalysis B: Environmental, Vol. 60, pp. 211-221, 2005.
66.Li, X., Quan, X. and Kutal, C.,“Synthesis and photocatalytic properties of quantum confined titanium dioxide nanoparticle,”Scripta Materialia, Vol. 50, pp. 499-505, 2004.
67.Wang, H., Wu Y. and Xu, B. Q.,“Preparation and characterization of nanosized anatase TiO2 cuboids for photocatalysis,”Applied Catalysis B: Environmental, Vol. 59, pp. 139-146, 2005.
68.Tsung-Yeh Yang, Hong-Ming Lin, Bee-Yu Wei, Chuan-Yi Wu and Chung-Kwei Lin,“UV enhancement of the gas sensing properties of Nano–TiO2,”Rev.Adv.Mater.Sci., Vol. 4, pp. 48-54, 2003.
69.Kim, H. S., Moon, W. T., Jun, Y. K. and Hong, S. H.,“High H2 sensing performance in hydrogen trititanate–derived TiO2,”Sensors and Actuators B: Chemical, Vol. 120, pp. 63-68, 2006.
70.Bonapasta, A.A. and Filippone, F.,“Photocatalytic reduction of oxygen molecules at the (1 0 0) TiO2 anatase surface,”Surface Science, Vol. 577(1), pp. 59-68, 2005.
71.Zalazar, C.S., Martin, C.A. and Cassano, A.E.,“Photocatalytic intrinsic reaction kinetics. II: Effects of oxygen concentration on the kinetics of the photocatalytic degradation of dichloroacetic acid,”Chemical Engineering Science, Vol. 60(15), pp. 4311-4322, 2005.
72.Okamoto, K., Yamamoto, Y., Tanaka, H. and Itaya, A.,“Heterogeneous Photocatalytic Decomposition of Phenol over Anatase Powder,”Bulletin of the Chemical Society of Japan, Vol. 58, pp. 2015-2022, 1985.
73.Munuera, G., Arnau, V.R. and Saucedo, A.,“Photo-Adsorption and Photo–Desorption of Oxygen on Highly Hydroxylated TiO2 Surfaces, Part1-Role of Hydroxyl Groups in Photo-adsorption,”Journal of American Chemical Society, Faraday Trans I, Vol. 75, pp. 736-747, 1979.
74.Raupp, G. B. and Junio, C. T.,“Photocatalytic Oxidation of Oxygenated Air Toxics,” Appl. Sur. Sci., Vol. 72, pp. 321-327, 1993
75.李凱博,以電漿激發化學氣相沉積法製備二氧化鈦觸媒薄膜之甲醇光催化反應研究,碩士論文,國立中興大學化學工程學系,2005。
76.莊達人,VLSI 製造技術,台北:高立出版,2002。
77.羅吉宗,戴明鳳,林鴻明,鄭振宗,蘇程裕,吳育民,奈米科技導論,台北:全華科技圖書股份有限公司,2003。
78.沈偉韌,趙文寬,賀飛,方佑齡,「TiO2 光催化反應及其在廢水
處理中的應用」,科技期刊,第4期,第127-130頁,1998。
79.林蔡毓,以 CVD 法製備二氧化鈦光觸媒去除甲苯之研究,碩士論文,國立中興大學環境工程學系,2001。
80.Dibble, L. A. and Raupp, G. B.,“Kinetics of the Gas-solid Hetergeneous Photocatalytic Oxidation of TCE by near UV Illuminated Titannium dioxide,” J.Catal.Letters, Vol. 4, pp. 345-348, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔