跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏端佑
研究生(外文):Yen Tuan-Yu
論文名稱:福山地區溪流水棲昆蟲群聚結構及功能組成之季節變化
論文名稱(外文):Seasonal changes in community structures and functional composition of stream insects at the Fu-Shan area
指導教授:謝森和謝森和引用關係
指導教授(外文):Shieh, Sen-Her
學位類別:碩士
校院名稱:靜宜大學
系所名稱:生態學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:80
中文關鍵詞:溪流水棲昆蟲群聚結構季節變化
外文關鍵詞:streamstream insectscommunity structuresSeas
相關次數:
  • 被引用被引用:7
  • 點閱點閱:1049
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的即藉由福山地區不同季節水棲昆蟲調查,探討(1)福山地區水棲昆蟲群聚結構與功能組成;(2)比較季節變化對水棲昆蟲群聚結構與功能組成之影響;(3)分析水棲昆蟲群聚結構及功能組成與環境因子的關係。於2003年9月開始進行至2004年8月,於福山地區哈盆溪流域及粗坑溪流域設立五樣站,利用蘇伯氏水網(surber sampler)做定面積採集底棲之所有水棲昆蟲,每月採集一次共採樣12次,每三個月設定為一個季節。水網之中所有物體皆以95%之酒精保存,於實驗室內進行物種之鑑定區分出種類 (Taxa) 及攝食功能群 (Functional feeding group),並計算歧異度指數、多樣性指數及均勻度指數,採樣時同時測量流速、流量、水溫、酸鹼度、遮蔽度等環境因子,進行變異數分析(two- way ANOVA)。檢定水棲昆蟲群聚組成在各季節與不同樣站間是否具有差異。本研究共記錄了8目50科103種,採樣總個體數為53105隻,平均密度1180 (隻/m2),以搖蚊科(Chironomidae)最為優勢,占總個體數之 24.4%,其次為四節蜉蝣(Baetis spp.),占總個體數 14.5%,其他褐蜉蝣(Choroterpes sp.)、扁蜉蝣(Afonurus sp.)、石蠅(Neoperla sp.)、扁泥蟲(Psephenoides sp.)、長腳泥蟲(Zaitzevia sp.)。以上七屬即占總數量的70 %以上。福山地區最主要之攝食功能群以聚集採食者(gathering collectors) 占56 %為主。
在同地區流域中各項水文資料,會隨著樣站及季節間而有所差異。這些差異會影響水棲昆蟲群聚及攝食功能群的組成。因此,各溪流水棲昆蟲物種之組成與分布,會因地區性環境因子的差異而有所不同。結果顯示各樣區水棲昆蟲物種群聚結構會受不同季節影響,可能是溫度、河寬、水深、流量及流速等環境因子在季節變化所造成。其中,樣站一~三(哈盆溪流域)在秋季及冬季時的平均密度,均明顯大於春、夏兩季,樣站四及五(粗坑溪流域)在冬季及春季時的平均密度,均明顯大於秋、夏兩季,流量大量增加雖然使水棲昆蟲總密度下降,但多樣性影響卻不明顯,相關分析結果亦顯示,水深分別與豐富度指數、香農多樣性指數呈正相關。水溫與密度呈負相關,酸鹼度與辛普森指數呈負相關而與香農多樣性指數及均勻度呈正相關。 結果顯示環境因子與生物多樣性等相關指數在不同樣站與季節間相關性會有所差異。且各項環境因子對於水棲昆蟲的影響並非一致,而夏季水量增加相當可能影響水棲昆蟲密度下降。但是流量較大並非對所有的物種均有負面影響,四節蜉蝣科之 Baetis spp.密度在秋、夏兩季高於其他兩季,秋、夏兩季為福山地區之豐水期,因此颱風後帶來大量的暴水造成流速與流量的激增,可能使藻類不易著生,枯枝落葉等有機質不易堆積,福山地區主要的功能攝食群為聚集性採食者,食物的短缺,也可能造成稚蟲密度下降原因。季節間水溫的變化,會改變水棲昆蟲的生長週期,水溫升高可能對水棲昆蟲造成生長週期會縮短而提早羽化的影響,因此,水溫的變化也可能是夏季採樣水棲昆蟲個體數較低的結果。
This research is to investigate the aquatic insect of different seasons of area in Fushan. Mainly discussing (1) The aquatic insect''s clustering structure and function of the area (2) Compare the influence of seasonal variations (3) analysis aquatic insect''s clustering structure, function make up and the relationship with environmental factors. Started from August 2004 till September 2003, I set up a total of five stations in the Happen river basin and the Cu-keng river basin. Utilize the Surber sampler to define the area of gathering for the aquatic insects in these stations. Take records 12 times a month and set up every three months as one season. In the laboratory, all objects are kept and reserved with the 95% alcohol and distinguish out the Taxa and Functional feeding group. Then, calculate out the difference degrees of index, diversified index and index of degree of consistency, measure the velocity of flow, water temperature, sour soda degree, cover such environmental factors as degree, etc. Utilize all the data to make a variation and count analysis (two-way ANOVA) . The purpose is to assay if the aquatic insect clustering differently in each station and each season. This research has recorded down 8 order, 50 family and 103 taxa. It sampled a total of 53,105 pieces, average density at 1,180 (each/ m2) . The shake Chironomidae advantage the most, accounts for 24.4% of the total counted; secondly it is mayflies ( Baetis spp.) , accounts for 14.5%; other Choroterpes sp.、Afonurus sp.、Neoperla sp. , Psephenoides sp.、 Zaitzevia sp. the above seven taxa take possession of more than 70% of the total numbers. The main ingesting group in Fushan area is the gathering collectors which take up 56%.
According to the hydrological data gathered from the basin, status show different in each station with season changes. These differences will influence aquatic insect clustering and ingest composition as well as the function of group. Therefore, composition and distribution of the species of aquatic insect will be different to some extent because of difference of environmental factors of provincialism. The result shows various kinds of district aquatic insect''s species clustering structure will be influenced by different seasons, it may be that such environmental factors as the temperature, river wide, depth of water, flow and velocity of flow,etc. cause in the seasonal variation. Among site 1~3, the average density in autumn and winter, is obviously greater than spring, summer. Average density for station four and five in winter and spring, is then obviously greater than autumn, summer. Though it make the aquatic insect''s total density drop when the flow increase in a large amount, but, relevant analysis results also show, the depth of water presents positive correlation with enriching one degree of indexes, Shannon''s diversified index separately. Water temperature, density, sour soda degree and the Sampson index have negative correlation. However, it presents positive correlation with Shannon diversified index and degree of consistency. The result shows such relevant indexes as environmental factor and bio-diversity and will be different to some extent in the dependence among different kind of stations and seasons. The result shows the influence on the aquatic insect of every environmental factor is not unanimous, and it may influence the aquatic insect''s density to drop if the water increases in summer. However, the summer water flow is not bad for all species. Baetis spp’s density is higher in the summer and fall, especially with the water hitting the high level. With the summer and fall are Fushan’s raining season, sometimes typhoons also bring out lots of heavy rain which increase the water flow. After typhoon, it causes the surge of velocity flow and brings a large amount of cruel water which make alga difficult to attach, withered pieces of fallen leaf are difficult to pile up. This might be the reason that caused food shortage for the ingest group and dropping numbers of the naiad''s density in Fushan. The changes of the water temperature among seasons certainly change the growth cycle of the aquatic insect. Rising temperature may be the reason which shortens the growth cycle of the aquatic insect. Therefore, it can be assumed that the aquatic insect individual counts and sampling are low in result is due to the changes of the water temperature in the summer time.
摘要-----------------------------------------------------------------------------------------------I
Abstract------------------------------------------------------------------------------------------II
壹、前言-----------------------------------------------------------------------------------------1
 水棲昆蟲之重要性-----------------------------------------------------------------------1
 水棲昆蟲群聚與功能組成--------------------------------------------------------------2
環境因子對水棲昆蟲群聚影響--------------------------------------------------------4
台灣過去的研究-------------------------------------------------------------------------10
研究目的----------------------------------------------------------------------------------10
貳、材料方法----------------------------------------------------------------------------------11
研究地點概況----------------------------------------------------------------------------11
野外採集方法----------------------------------------------------------------------------13
 資料分析----------------------------------------------------------------------------------15
參、結果----------------------------------------------------------------------------------------18
 各樣站環境資料-------------------------------------------------------------------------18
 環境因子在不同樣站與季節間之變化----------------------------------------------21
 福山地區水棲昆蟲群聚組成----------------------------------------------------------21
 各樣站水棲昆蟲群聚組成-------------------------------------------------------------22
 福山地區攝食功能群之組成----------------------------------------------------------25
 水棲昆蟲群聚組成之歧異度----------------------------------------------------------26
水棲昆蟲群聚結構與環境因子之關係----------------------------------------------27
肆、討論----------------------------------------------------------------------------------------28
 水棲昆蟲分佈與多樣性----------------------------------------------------------------28
 環境因子對水棲昆蟲的影響----------------------------------------------------------29
伍、結論----------------------------------------------------------------------------------------35
 謝致----------------------------------------------------------------------------------------36
陸、參考文獻----------------------------------------------------------------------------------37
 表------------------------------------------------------------------------------------------ 44
 圖-------------------------------------------------------------------------------------------51
 附錄----------------------------------------------------------------------------------------61
川合禎次,1985。日本產水生昆蟲檢索圖說。東海大學出版社,日本,東京。409頁。
川合禎次、谷田一三。2005。日本產水生昆蟲。東海大學出版社,日本,東京。1360頁。
津田松苗。1962。水生昆蟲學。北隆館。東京。269 頁。
王立志,2000 。 颱風對福山試驗集水區溪流水化學及輸出之衝擊。八十八年度專題研究計
畫成果報告。行政院國家科學委員會 生物科學發展處:28-34。
王立志,2001。福山溪水養分磷之動態與輸出。中華林學季刊 34(1):31-47。
王立志、鄧子菁,1999。1996年賀伯颱風期間福山試驗林吸流水化學變化之研究。中華林學季刊 32(2):217-232。
王齡國,2007。烏溪之水棲昆蟲資源調查及水質監測研究。國立嘉義大學生物資源學系碩士  論文 。
方雅玲,2004。台灣西部低海拔溪流石瀨區之蜉蝣群聚生態。國立屏東科技大學野生動物保
育所碩士論文。屏東。54頁。
丘明智,2004。武陵地區溪流之水棲昆蟲群聚結構及水質監測。國立中興大學昆蟲學系碩士
論文。台中。95頁。
田志仁、吳承恩、黃顯宗、汪碧涵。2004。以水棲昆蟲為指標生物評估台北外雙溪水質。特
有生物研究保育中心自然保育季刊45:38-46。
田佩玲。2006。溪頭地區北勢溪水棲昆蟲群聚結構及功能組成。國立台灣大學昆蟲學研究所
碩士論文。台北。166 頁。
李後晶,1999。 福山森林生態系研究-水棲昆蟲在哈盆溪之生態功能 八十七年度專題研究
計畫成果報告。行政院國家科學委員會 生物科學發展處。
林斯正。1995。水生大型無脊椎動物與棲地監測。自然保育季刊。11:6-9。
林曜松、莊鈴川。1999。鳳山溪河川生態調查研究。特有生物中心。49頁。
何鎧光、徐世傑。1977。台北區新店溪水生昆蟲之研究。省立博物館學年刊20:1-49。
汪靜明,1999。生物多樣性研討會論文集-河川生物多樣性的內涵與生態保育。行政院農業委員會。276-288 頁。
李昌威,1988。南勢溪流域襀翅目之分類。國立台灣大學植物病蟲害學研究所碩士論文。台北。81頁。
呂世宗、洪正中、梁素月,1986。烏溪流域水生生物調查及水質等級評估。台灣環境保護2:83-90。
邵廣昭、張廖年鴻,1998。南澳溪溪流生態資源調查報告。農林廳水土保持局。特有生物中心。43頁。
洪正中、張嵩林、楊平世,1986。以底棲生物當作本省河川污染生物指標之研究。台灣環境保護3:82-93。
洪富文、游漢明、馬復京,1995。1994年颱風使福山闊葉林的年枯落物量加倍。林業試驗所研究報告季刊 10(4):485-491。
徐崇斌。1994。基隆河水棲昆蟲生物指標之研究。國立台灣大學植物病蟲害學研究所碩士論文。台北。70頁。
徐崇斌、楊平世,1997。應用水棲昆蟲生物指標評估基隆河水質之研究。中華昆蟲17(3):152-161.
張先正,1992。台灣細蜉科(蜉蝣目:細蜉總科)。國立台灣大學昆蟲學研究所碩士論文。111
頁。
彭楨惠,1999。哈盆溪粗顆粒有機務之收支研究。國立台灣大學森林學研究所資源保育組碩士論文。台北。58頁。
陳章波、楊平世、林志高、吳俊宗、龐元勳、謝蕙蓮,1997。淡水河下游生物相群聚之動態
調查、淡水河污染整治對生態影響之研究、基隆河污染源與底棲生物採樣分析調查。
行政院環保署EPA-86-G106-09-14、EPA-86-E3G1-O9-13、EPA-86-G103-03-20。
陳章波、林志高、吳俊宗、楊平世、謝蕙蓮、劭廣昭、龐元勳,1999。淡水河生物相調查及生物指標手冊建立。EPA-88-G0108-03-1129。行政院環境保護署。
陳信雄、楊蔚宇、張振生,1999,哈盆溪集水區伏流水動態研究(四)。行政院國家科學委員會專題研究計畫成果報告。
夏禹九,1998。福山試驗林的水文與能量收支(IV)。行政院國家科學委員會專題研究計畫成果報告。
夏禹九、黃正良,1999。福山試驗林的水文特性。中華林業季刊32:39-51。
康世昌,1993。台灣的蜉蝣目(四節蜉蝣除外)。國立台灣中興大學昆蟲學研究所博士論文。
246頁。
郭紹群,1996。美崙溪水棲昆蟲與生物指數之研究。國立東華大學自然資源管理研究所碩士論文。花蓮。246頁。
黃國靖,1987。七家灣溪水棲昆蟲相及其生態研究。國立台灣大學植物病蟲害學研究所碩士
論文。台北。147頁。
黃國靖,1994。景美溪水棲昆蟲生態及生物指標研究。國立台灣大學植物病蟲害學研究所博
士論文。台北。150頁。
黃國靖、楊平世,1986。水棲昆蟲及底質環境之關係pp.39-54。農委會林業特刊9號「自然
為化景觀保育論文集」(二),鮭鱒魚保育專輯。98頁。
黃雅倫,2005。乾旱對哈盆溪大型無脊椎動物群聚組成之影響。國立台灣大學生態學與演化
生物學研究所碩士論文。台北。56頁。
張學文,1992。高屏溪水域生態調查及其污染生物指標之建立-水生昆蟲。行政院環保署。5:1-25
張瀚元,1998。福山森林溪流粗粒有機物質異生性輸入之研究。國立台灣大學森林學研究所
碩士論文。台北。44頁。
張瑜棻,2001。利用不同空間層次評估高屏溪中上游土地利用對水棲昆蟲群聚之影響。國立高雄師範大學生物科學研究所碩士論文。高雄。89頁。
楊平世,1992。水棲昆蟲生態入門。台灣省政府教育廳,台北。151頁。
楊平世、林曜松、黃國靖、梁世雄、謝森和、曾晴賢,1986。武陵農場河域之水棲昆蟲相及
生態調查。農委會75年生態研究第001號。48頁。
楊平世、黃國靖、謝森和,1990a。北勢溪之水棲昆蟲資源及生態研究(I)水棲昆蟲相及其相關
生態。中華昆蟲 10:209-224。
楊平世、謝森和、黃國靖,1990b。北勢溪之水棲昆蟲資源及生態研究(II)水文因子及水棲昆
蟲之群聚結構。中華昆蟲 10:249-269。
楊平世、黃國靖、康世昌、林宜君,1992。台灣河川污染水棲昆蟲指標生物研究。行政院環
保署 EPA 154810205。
楊平世、汪良仲。1996。七家灣溪的水棲昆蟲監測調查。內政部營建署雪霸國家公園管理處。
29 頁。
楊平世、謝森和,2001。福山森林生態-哈盆溪水棲昆蟲之族群結構、生產量及流水下動物相之研究。行政院國家科學委員會專題研究計畫成果報告。
楊平世、謝森和,2002。哈盆溪水棲昆蟲之族群結構、功能組成與其對枯葉分解的影響。行政院國家科學委員會專題研究計畫成果報告。
趙大衛、方力行、張學文、許清政、劉景煌、劉仲康、劉和義,1992。高屏溪水域生態調查及其污染生物指標之建立。行政院環保署 EPA-81-E3S5-09-03。
顏聖紘,1997。水螟亞科與凹翅螟亞科(鱗翅目: 螟蛾科)主要支系之系統發育分析及台灣產種類之分類探討。國立中山大學生命科學研究所碩士論文。高雄。486頁
潘俊逸,2003。旗山溪水棲昆蟲生態及生物指標研究。國立高雄師範大學生物科學研究所碩士論文。高雄。113頁。
謝森和,2000。汙染對水棲昆蟲群聚之影響。國立自然科學博物館。昆蟲與環境研討會摘要集。15頁。
謝森和,2007。哈盆溪落葉分解:養分釋放與相關之大型無脊椎動物。野生動物保育與研究學術研討會:105頁。
謝森和、楊平世,2000。七家灣溪水棲昆蟲之群聚結構及功能組成:1985-1986和1995-1996。Zoological Studies 39(3):191-202。
Allan, J. D. 1975. The distributional ecology and diversity of benthic insects in cement creek
Colorado. Ecology 56:1040-1053.
Allan, J. D.1995.Stream ecology:structure and function of running waters.Chapman and Hall,London.388pp
Allan, J.D.,and L.B.Johnson.1997.Catchaent-scale analysis of aquatic ecosystems.Freshwater Biology 37:107-111.
Atkinson, D. 1995. Effects of temperature on the size of aquatic ectotherms:Exceptions to the
general rule. J. thrtm. Biol. 20(1/2):61-74.
Ban, R., and T. Kawai. 1986. Comparison of the life cycles of two mayfly species between upper
and lower parts of the same stream. Aquatic Insects 8(4):207-215.
Becker, C. D. 1973. Development of Simulium (Psilozia) vittatum Zett. (Diptera: Simuliidae) from
larvae to adults at thermal increments from 17.0 to 27.0 deg C. Am. Midl. Nat. 89: 246-251.
Boulton, A. J. 2003.Parallels and contrasts in the effects of drought on stream macroinvertebrate
assemblages. Freshwater Biology 48:1173-1185.
Brittain, J. E. 1976. Experimental studies on nymohal growth in Leptophlebia vespertina(L.)
(Ephemeroptera). Freshwater Biol. 6:445-449
Brittain, J. E., and I. C. Campbell. 1991. The effect of temperature on egg development in the Australian mayfly genus Coloburiscoides (Ephemeroptera:Coloburiscidae)and its relationship to distribution and life history. J. of Biogeography 18:231-235.
Brammer, C. A., and J. F. MacDonald,2003.A Benthic insect fauna of a clean-water stream on   Utah''s Colorado Plateau, USA. Western North American Nat. 63:21-34.
Butcher, J. T., P.M. Stewart,and T. P .Simon.2003. A Benthic Community Index for streams in   the Northern Lakes and Forests Ecoregion. Ecol. Indicators 3: 181-193
Cereghino, R., and P. Lavandier. 1998. Influence of hypolimnetic hydropeaking on the distribution and population-dynamics of Ephemeroptera in a mountain stream. Freshwater Biol. 40:385-399.
Ciborowski, J. H., P. J. Pointing, and L. D. Corkum. 1977. The effect of current velocity and sediment on the drift of the mayfly Ephemerella subvaria Mcdunnough. Freshwater Biol. 7:567-572.
Cobb, D. G., T. D. Galloway, and J. F. Flannagan. 1992. Effects of discharge and substrate stability on density and species composition of stream insects. Can. J. Fish. Aquat. Sci. 49: 1788-1795.
Cummins , K. W.,and M. J. Klug. 1979 .Feeding ecology of stream invertebrates.Ann.Rev.Ecol.
and Syst.10 : 147-172.
Cummins, K. W. 1973. Trophic relations of aquatic insects. Ann. Rev.of Entomol. 18: 183-206.
Cummins K. W. 1974. Structure and function of stream ecosystem. BioScience 24:631-641.
Daly, H. V. 1996. General classification and key to the orders of aquatic and semiaquatic insects, In: An Introduction to the Aquatic Insects of North America (3rd ed.), R. W. Merritt, and K. W. Cummins, eds., Kendall/Hunt Publishing, Dubuque, IA. 722pp.
Edington, J. M. 1968. Habitat preferences in net-spinning caddis larvae with special reference to the
influence of water velocity. J. Anim. Ecol. 37: 675-692.
Englund, G., and B. Malmqvist. 1996. Effects of flow perturbations, habitat area and isolation on the macroinvertebrate fauna of rapids in north Swedish rivers. Regulated river:R.&M. 12:433-445
Englund, G., and B. Malmqvist. 1996. Effects of flow perturbations, habitat area and isolation on the macroinvertebrate fauna of rapids in north Swedish rivers. Regulated river:R.&M. 12:433-445
Fisher, R. A., A. S. Corbet,and C. B. Williams.1943.The relation between the number of individuals and the number of species in a random sample of an animal population. J. Anim.Ecol. 12:42-58.
Franken, R. J. M., R. G. Storey, and D. D. Williams. 2001. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiol. 444:183-195.
Friesen, M. K., J. F. Flannagan, and S. G. Lawrence. 1979. Effects of temperature and cold storage on development time and viability of eggs of the burrowing mayfly Hexagenia Rigida ( Ephemeroptera : Ephemeridae). Can. Entomol. 111:665-673.
Frissell,C.A.,W.J.Liss,C.E.Warren,and M.D.Hurley.1986.A hierarchical framework for stream
habitat classification:viewing streams in a watershed context.Environmental Management
10(2):199-214.
Fritz, K. M., and W. K. Dodds. 2004. Resistance and resilience of macroinvertebrate assemblages to dying and flood in a tallgrass prairie stream system. Hydrobiologia 527: 99-112.
Hansen, B. M., and J. A. Waringer. 1998. The influence of hydraulic stress on microdistrbution patterns of zoo benthos in a sandstone brook(Weidlingbach, lower Austria). Internat. Rev. Hydrobiol. 83(5-6):381-396.
Harker, J. E. 1997. The role of parthenogenesis in the biology of two sapecies of mayfly(Ephemeroptera). Freshwater Biol. 37:287-297.
Huhta, A., T. Muotka, A. Juntunen, and M. Yrjönen. 1999. Behavioural interactions in stream food webs : the case of drift-feeding fish, invertebrate predators and grazing mayflies. Journal of Animal Ecology 68: 917-927.
Hemphill, N.and S.D. Cooper.1983. The effect of physical disturbance on the relative abundance of
two filter-feeding insects in a small stream. Oecologia 58:378-383.
Humpesch, U. H. 1982. Effect of temperature on larval growth of Ecdyonurus dispar
( Ephemeroptera : Heptageniidae ) from two English lakes. Freshwater Biol. 11:
441-457.
Huryn, A. D., and J. B. Wallace. 2000. Life history and production of stream insects. Annual Reviews Entomol. 45:83-110.
Krebs, C.J. 1999. Ecological methodology.2nd ed. Addison-Welsey Educational Publishers,
INC.,Menlo Park, C A. 620 pp.
Lake,P.S.2000. Disturbance,Paychiness, and diversity in streams. Journal of the North American
Benthological Society 19:573-592.
Marchant, R. 1982. Life spans of two species of tropical mayfly nymph (Ephemeroptera)form
Magela Creek, Northem Territory. Aust. J. Mar. Freshwater Res. 33:173-179.
Malmqvist, B., and G. Englund. 1996. Effects of hydropower-induced flow perturbations on mayfly
(Ephemeroptera)richness and abundance in north Swedish river rapids. Hydrobiol. 341:
145-158.
Minshall, G. W., and P. V. Winger. 1968. The effect of reduction in stream flow on invertebrate drift. Ecology. 49(3):580-582.
Milner, A. M., R. C. Taylor, and M. J. Winterburn. 2001. Longitudinal distribution of macroinvertebrates in two glacier-fed New Zealand rivers. Freshwater Biol. 46:1765-1775.
Merrit, R. W., and K.W.Cummins.2007.An introduction to the aquatic inseats of North America.3rd
Edn. Kendall and Hunt, Dubuque,Iowa. 862 pp
Multiple Trophic Levels of a Forest Stream Linked to Terrestrial Litter Inputs Nolte, U., M. J.
Oliveira, and E. Stur. 1997. Seasonal, dischange-driven patterns of mayfly assemblages in
an intermittent Neotropical stream. Freshwater Biol. 37: 333-343.
Murphy, M. L.,C. P. Hawkins, and N. H. Anderson. 1981.Effect of canopy modification and accumulated sediment on stream communities. Tran. Am. Fish. Soc. 110:469-478.
Nichols, R. J. 1996. Biodiversity of aquatic insects in relation to temperate and tropical land use,
and the life histories and microhabitat associations of lotic mayflies. University of
issouri-Columbia. Ph.D.
Nebeker, A. V., S. T. Onjukka, D. A. Chapman. 1996. Effect of low dissolved oxygen on aquatic life stages of the caddisfly Clistoronia magnifica(Limnephilidae). Arch. Environ. Contam. Toxicol.31:453-458.
Nolte, U., M. J. Oliveira, and E. Stur. 1997. Seasonal, dischange-driven patterns of mayfly
assemblages in an intermittent Neotropical stream. Freshwater Biol. 37: 333-343.
Nordlie, K. J., and J. W. Arthur. 1981. Effect of elevated water temperature on insect emergence in
outdoor experimental channels. Environ. Pollut. 25: 53-65.
Pringle, C. M., and A. Ramirez. 1998. Use of both benthic and drift sampling techniques to assess tropical stream invertebrate communities along an altitudinal gradient, Costa Rica. Freshwater Biol. 39:359-373.
Rutz,D.A., R.C.Axtell,and T.D.Edwards. 1980. Effect of organic pollution levels on aquatic insect
audance in field pilot-scale anaerobic animal waste lagoons. Mosq.News 40: 403-409.
Shieh S.-H.,B.C.Kondratieff&J.V.Ward.1999. Longitudinal changes in benthic organic organic
matter and macroinvertebrates in a polluted Colorado plains stream.Hydrobiologia
411:191-209.
Shieh, S. H., and P. S. Yang. 1999a. Colonization patterns of aquatic insects on artificial substrates
in Taiwan stream. Chinese J. Entomol. 19: 27-50.
Shieh S.-H.,and P.S.Yang.1999b.Colonization patterns of aquatic insects on artificial substrates:
Effects of substrates sizes.Chinese. J . Entomol.19:119-143.
Shieh S.-H.,B.C.Kondratieff,J.V.Ward&D.A.Rice. 1999. The relationship of macroinvertebrate assemblages to water chemistry in a polluted Colorado plains stream. Arch.Hydrobiol.145 4 405-432.
Shieh, S. H., and P. S. Yang. 2000. Community structure and functional organization of aquatic
insects in an agricultural mountain stream of Taiwan: 1985-1986 and 1995-1996. Zool.
Stud. 39: 191-202.
Shieh S.-H.,J.V.Ward &B.C.Kondratieff. 2003. Longitudinal changes in macroinvertebrate production in a atream affected by urban and agricultural activities.Arch.Hydrobiol.157 4 483-503.
Sweeny, B. W., R. L. Vannote, and P. J. Dodds. 1986. Effects of temperature and food quality on
growth and development of a mayfly, Leptophllebia Intermedia. Can. J. Fish. Aquat. Sci.
43:12-18.
Sweeney, B. W. 1978. Bioenergetic and developmental response of a mayfly to thermal. Limnol. Oceanogr 23:461-477
Vannote, R. L., and B. W. Sweeney. 1980. Geographic analysis of thermal equilibria: a conceptual
model for evaluating the effect of natural and modified thermal regimes on aquatic insect
communities. Am. Nat. 115: 667-695.
Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. The river
continnum concept. Canadian Journ. of Fisheries and Aquatic Sci. 37: 130-137.
Vinson, M.R.,and C.P.Hawkins.1998.Biodiversity of stream insects:variation at local,basin,and regional scales. Annu. Rev. Entomol.43:271-293
Ward, J. V. 1992. Aquatic Insect Ecology 1 Biology and Habitat. John Wiley and Sons, Inc. USA.
Ward, J. V., and J. A. Stanford. 1982. Thermal responses in the evolutionary ecology of aquatic
insects. Ann. Rev. Entomol. 27:97-117.
Wang L.-J.,1996,Storm Solute Changed in the Fushan forested Watershed,NE Taiwan.Journal of Chinese Soil and Water Conservation,27(2):97-105.
Wallace, J. B., and J. R. Webster. 1996. The role of macroinvertebrates in stream ecosystem
function. Annu. Rev. Entomol. 41: 115-139.
Wallace J. B., S. L. Eggert, J. L. Meyer, J. R. Webster. 1997. Multiple Trophic Levels of a Forest Stream Linked to Terrestrial Litter Inputs. Science 4 : 102-104
Wursten, C. B., and M. Sartori. 1995. Distribution, diversity, life cycle and growth of a mayfly community in a prealpine stream system(Imsecta, Ephemeroptera). Hydrobiol. 308: 85-101.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top