跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建谷
研究生(外文):Jian-Gu Lin
論文名稱:綠藻萃取物與細胞壁組成之分離、鑑定與抑制糖苷酵素活性
論文名稱(外文):Isolation, characterization and glycosidase inhibition of Chlorella vulgaris extract and cell wall component
指導教授:賴鳳羲
指導教授(外文):Phoency Lai
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:79
中文關鍵詞:混合型非競爭性抑制競爭性抑制β-glucuronidase綠藻α-glucosidaseβ-glucosidase
外文關鍵詞:competitive inhibitionmixed-type noncompetitive inhibitionβ-glucuronidaseβ-glucosidaseChlorella vulgarisα-glucosidase
相關次數:
  • 被引用被引用:14
  • 點閱點閱:1672
  • 評分評分:
  • 下載下載:305
  • 收藏至我的研究室書目清單書目收藏:0
綠藻為現今熱門的天然藻類保健素材之ㄧ,因部分保健功效與糖苷酵素(α-glucosidase、β-glucosidase及β-glucuronidase)活性之抑制有潛在相關,故本研究探討綠藻(Chlorella vulgaris)各種區分物之分離、分子性質鑑定及對上述三種酵素活性之影響。樣品包括: 綠藻熱水萃取物 (WS)、綠藻熱水不溶物經Cellulase+Pectinase降解之水可溶物(E1)、綠藻粉經cellulase降解之凍乾物的熱水萃物 (E2) ,上述樣品再經超濾膜處理次劃分成大(F1)、小(F3)分子區分物。再自綠藻熱水萃不溶物製備70 %酒精萃取(WIS-E70S) 與耐酵素降解之不溶物(E1-WIS、E2-WIS)等。分子篩層析結果顯示,上述產物分子呈雙元分佈者有: WS-F1 (重量平均分子量為3395 kDa及170 kDa)、WS-F3 (5 kDa及1 kDa)、E1-F1 (14 kDa及5 kDa); 呈單分佈者為: E1-F3 (6 kDa)、E2-F1 (158 kDa)、E2-F3 (6 kDa)。WS-F1的主要單糖組成為核糖(49 %); E1-F1為半乳糖(38 %); E1-WIS為阿拉伯糖(40 %); WS-F3、E1-F3、E2-F1、E2-F3及E2-WIS等皆為葡萄糖(約30~85 %不等)。由酵素抑制與酵素動力學實驗結果得知,在萃取物濃度10 mg/mL下,對α-glucosidase之抑制以WIS-E70S (61 %)效果較佳,經Lineweaver-Burk作圖顯示其抑制作用為混合型非競爭性抑制; 對β-glucosidase以WS-F1(56 %)與E2-F3(48 %)效果較佳,分別為競爭性抑制與混合型非競爭性抑制; 而對β-glucuronidase以WIS-E70S抑制效果較佳(在 10 mg/mL下達89 %),為一個強的混合型非競爭性抑制劑。
Chlorella vulgaris is one of the popular healthy materials in natural algae, with healthy efficiency potentially relating to glycosidase (α-glucosidase, β-glucosidase and β-glucuronidase) inhibition. Therefore, this study was to investigate the isolation, preparation, characterization, and glycosidase inhibition of various fractions from Chlorella vulgaris. The samples included: hot water extract of Chlorella (WS), enzymatic hydrolyte of Chlorella hot water insoluble (WIS) degraded by both cellulase and pectinase (E1), and hot water extract of cellulase hydrolyte from freeze-dried Chlorella powder (E2), and the large (F1) and small (F3) molecular fractions of the above samples separated by ultrafiltration. The 70 % ethanol soluble of WIS (WIS-E70S) and resistant enzyme hydrolysis insoluble substance (E1-WIS, E2-WIS) were further prepared. The results of high-performance molecular size exclusion chromatography indicated that the samples of two molecular distributions were: WS-F1 (3395 kDa and 170 kDa), WS-F3 (5 kDa and 1 kDa), E1-F1 (14 kDa and 5 kDa); those of mono-distribution included: E1-F3 (6 kDa), E2-F1 (158 kDa), E2-F3 (6 kDa). The major monosaccharides was ribose for WS-F1 (49%), galactose for E1-F1 (38 %), arabinose for E1-WIS (40 %), and glucose for the others (WS-F3, E1-F3, E2-F1, E2-F3 and E2-WIS) (approximately 30~85%). The results of enzyme inhibition and enzymatic kinetics suggested that, at a concentration of 10 mg/mL, WIS-E70S exhibited the best inhibitive effect against α-glucosidase (61%), in a mixed-type noncompetitive way implied by Lineweaver-Burk plot. WS-F1 (56%) and E2-F3 (48%) showed the greatest inhibition on β-glucosidase, in competitive and mixed-noncompetitive types, respectively. And, WIS-E70S was the most effective to reduce β-glucuronidase activity (89% at 10 mg/mL) with a strongly mixed-type noncompetitive manner.
目錄

頁次
中文摘要...................................................I
英文摘要..................................................II
謝誌......................................................IV
目錄.......................................................V
圖目錄....................................................VI
表目錄...................................................VII
一、 前言..................................................1
二、 文獻回顧...............................................2
1.綠藻之分類............................................2
2.綠藻的營養特質與組成...................................3
3.綠藻萃取方法..........................................6
4.綠藻之生理功效........................................7
4.1.具有抗氧化能力....................................7
4.2.促進免疫活性......................................7
4.3.提高脂質代謝......................................8
4.4.預防細菌感染......................................9
5.綠藻在工業上之應用....................................10
6.植物細胞壁組成.......................................11
6.1.初生細胞壁.......................................11
6.2.次生細胞壁.......................................12
6.3.中膠層..........................................12
7.水解細胞壁之酵素種類與功用.............................15
7.1.纖維素分解酵素...................................15
7.2.果膠分解酵素.....................................16
8.消化道中糖苷酵素之抑制................................18
8.1. α-Glucosidase.................................18
8.2. β-glucosidase及β-glucuronidase.................20
三、 研究目的..............................................22
四、 材料與方法............................................23
1.1.樣品制備流程.......................................23
1.2.實驗流程..........................................24
2.化學藥品............................................25
3.樣品制備............................................25
3.1.未破璧綠藻......................................25
3.2.酵素破璧綠藻....................................26
3.3.製備綠藻乙醇萃取物................................26
4.綠藻藻體細胞之顯微鏡觀察...............................26
5.化學分析.............................................26
5.1.總醣測定.........................................26
5.2.醣醛酸測定.......................................27
5.3.蛋白質測定.......................................27
5.4.UV/Visible 光譜及染劑錯合鑑定.....................29
(1)高濃度碘溶液試驗.................................29
(2)Congo red......................................29
(3)Aniline blue...................................29
5.5.α-amylase降解對碘呈色的影響........................29
6.分子性質之測定........................................30
6.1.分子量分布........................................30
6.2.單糖組成分析......................................30
7.酵素抑制活性測定......................................33
7.1. α-Glucosidase之活性測定..........................33
7.2. β-glucosidase之活性測定..........................34
7.3. β-glucuronidase之活性測定........................34
8.酵素抑制動力學........................................37
五、 結果與討論............................................39
1.顯微鏡觀察藻體外觀.....................................39
2.E1-酵素降解時pH值之變化................................39
3.基本組成分析..........................................39
4.分子量分布............................................43
5.單糖組成分析..........................................43
6.綠藻萃取物之染劑錯合鑑定...............................48
7.α-amylase酵素降解....................................48
8.酵素活性抑制..........................................52
8.1. α-Glucosidase..................................52
8.2. β-glucosidase..................................52
8.3. β-glucuronidase................................52
9.酵素抑制動力學........................................58
9.1. α-Glucosidase..................................58
9.2. β-glucosidase..................................67
9.3. β-glucuronidase................................68
六、 結論.................................................70
七、 參考文獻..............................................71

圖目錄
頁次
圖一 顯微鏡下之Chlorella Vulgaris......................3
圖二 植物細胞壁之構造..................................13
圖三 1-deoxynojirimycin之結構式.......................19
圖四 總醣檢量線.......................................28
圖五 醣醛酸檢量線.....................................28
圖六 單糖標準品之HPAEC檢量線...........................32
圖七 4-nitrophenyl α-D-glucopyranoside檢量線.........35
圖八 4-nitrophenyl β-D-glucopyranoside檢量線.........35
圖九 4-nitrophenyl β-D-glucuronide檢量線.............36
圖十 綠藻藻體外觀.....................................40
圖十一 綠藻在水中進行E1酵素降解時pH之變化.................41
圖十二 綠藻萃取物之分子量分布圖...........................44
圖十三 綠藻萃取物之染劑錯合鑑定...........................50
圖十四 綠藻萃取物之α-amylase酵素降解物的碘染呈色試驗.......51
圖十五 各種綠藻萃取物和劃分物對α-glucosidase之抑制活性.....54
圖十六 各種綠藻萃取物和劃分物對β-glucosidase之抑制活性.....55
圖十七 各種綠藻萃取物和劃分物對β-glucuronidase之抑制活性...56
圖十八 WIS-E70S對α-glucosidase之抑制型態(A),斜率(B) 及
1/Vm’(C)對抑制濃度做圖...........................59
圖十九 Acarbose對α-glucosidase之抑制型態(A) 及斜率(B)對抑制
濃度做圖.........................................60
圖二十 Green tea對α-glucosidase之抑制型態(A),斜率(B) 及
1/Vm’(C)對抑制濃度做圖...........................61
圖二十一 WS-F1對β-glucosidase之抑制型態(A) 及斜率(B)對抑制濃度
做圖............................................62
圖二十二 E2-F3對β-glucosidase之抑制型態(A) ,斜率(B) 及
1/Vm’(C) 對抑制濃度做圖..........................63
圖二十三 WIS-E70S對β-glucuronidase之抑制型態(A) ,斜率(B) 及
1/Vm’(C) 對抑制濃度做圖..........................64
圖二十四 Green tea對β-glucuronidase之抑制型態(A) 及斜率(B)
對抑制濃度做圖...................................65

表目錄
頁次
表一 綠藻乾燥藻體中含有之營養素...........................4
表二 綠藻萃取方法之文獻整理..............................6
表三 近年來綠藻生理機能性之研究..........................10
表四 已知之綠藻多醣及細胞壁組成..........................14
表五 酵素降解綠藻細胞壁之研究............................17
表六 腸道酵素抑制之研究.................................21
表七 單糖組成之HPAEC 分析條件...........................31
表八 單糖分析之回歸方程式...............................32
表九 綠藻成分分析......................................42
表十 綠藻萃取物之分子量分布.............................45
表十一 綠藻萃取物之單糖組成...............................46
表十二 綠藻萃取物及劃分物在10 mg/mL下對酵素之抑制活性.......57
表十三 抑制物對酵素之抑制型態及動力學參數(Ki、αKi及α值).....66
七.參考文獻
坂口健二、山田隆,發明。三菱化成工業株式會社。1982 November 9。ク ロレラの細胞壁の除去方法。日本。專利特開昭57-181692號。
山田勝己。1992。微細藻類之應用, p.1-31。恒星社厚生閣,東京、日本。
蓑島良一、藤田匡,發明。日清製油股份有限公司。1990 Mar 1。新穎綠藻之製造方法。臺灣。專利第00129773號。
王朝鐘、蕭松瑞、林仁混。1981。綠藻對鼠體血清膽固醇的影響。台灣醫誌80, 929-933。
林良平。1987。螺旋藻之生產現況及未來展望。中華生質能源學會會誌6(3-4), 91-103。
林良平。1991。小球藻之混營生長及微細藻在生態生產上所扮演的角色。中華生質能源學會會誌10 (3-4), 89-98。
林良平。1994。小球藻(Chorella) 之大量培養及在健康食品工業上的應用。中華生質能源學會會誌13 (3-4), 155-167。
張世界。2003。色素抽出方法暨發酵醪果膠分解酵素前處理對於紅葡萄酒制造之影響。國立中興大學碩士論文。
陳祖得。1988。小球藻原生質體之誘導和接受高壓電擊之反應。國立臺灣大學碩士論文。
彭顯惠。2006。纖維素酶之生產菌篩選及水解綠藻之最適條件探討。國立台灣海洋大學碩士論文。
陳佩君。1996。小球藻萃取液之化學組成及其對細胞生長之影響。國立臺灣大學碩士論文。
高大翔。2003。以染劑錯合及光譜鑑定食品多醣。私立靜宜大學碩士論文。
孫財前。2006。綠藻水萃物之抗氧化性與其關鍵組成份。私立靜宜大學碩士論文。
李旻。2006。綠藻中α-glucosidase 抑制物之分離與特性鑑定。私立靜宜大學碩士論文。
黃悌儀2000綠藻對於大白鼠體內脂質代謝的影響。台北醫學院保健營養學研究所碩士論文。
許清森。2004。綠藻的營養與保健功效研究。生物產業15(4):51-59。
蔡震壽、邱宗甫。1996。酵素處理對海菜水解物之萃取率及乳化特性的影響。中國農業化學會誌 34(2), 241-247。
劉正儀。2004。綠藻對BALB/c小鼠全身性及腸道免疫之影響。台北醫學大學醫學研究所碩士論文。
李宏圖、賴精二、董一致。1977。綠藻之降血糖作用。台灣醫誌76, 272-276。行政院衛生署。2003。國人社食營養素參考攝取量及其說明,第六版,92年。
Albersheim, P.(1975).The walls of growing plant cells. Scientific American,232(4),81-84.
Al-Hooti, SN., Sidhu, JS., Al-Saqer, JM. & Al-Othman, A. (2002).Chemicall composition and quality of date syrup as affected by pectinase/cellulose enzyme treatment. Food Chemistry, 79,215-220.
Amano, H.,& Noda, H. (1992). Proteins of protoplasts from several seaweeds. Nippon Suisan Gakkaishi, 55,291-299.
Ahlers, F., Thom, I., Lambert, J., Kuckuk, R.& Wiermann, R. (1999). 1H NMR analysis of sporopollenin from Typha angustifolia. Phytochemistry, 50, 1095-1098.
Anjali, S., Satya, PS.& Ramesh B. (1998). Perinatal influence of chlorella vulgaris (E-25)in hepatic drug metabolizing enzymes and lipid peroxidation. Anticancer Reserch, 18,1509-1514.
Araki, N.& Takeda, H. (1992). Purification and properties of a lytic enzyme from the cell wall of Chlorella ellipsoidea C-87. Physiologia Plantarum, 85, 710-178.
Blumreisinger, M., Meindl, D.& Loos, E. (1983). Cell wall composition of chlorococcal algae. Phytochemistry, 22, 1603-1604.
Block, TM., Lu, XY., Platt, FM., Foster ,GR., Gerlich, WH., Blumberg, BS.& Dwek, RA..(1994). Proceedings of the National Academy of Sciences of the United States of America, 91, 2235—2239.
Burczyk, J., Terminska-Pabis, K.& Śmietana, B. (1995). Cell wall neutral sugar composition of chlorococcalean algae forming and not forming acetolysis resistant biopolymer. Phytochemistry ,38(4), 837-841.
Burczyk, J., Śmietana, B., Termińska-Pabis, K., Zych, M.& Kowalowski, P. (1999). Comparison of nitrogen content amino acid composition and glucosamine content of cell walls of various chlorococcalean algae. Phytochemical Analysis, 51, 491-497.
Christov, LP.& Prior, BA. (1993). Esterases of xylan-degrading microorganisms:production,properties,and significance. Enzyme and Microbiol Technology, 15,460-475.
Chen, J., Cheng, YQ., Yamaki, K.& Li, LT. (2007).Anti-α-glucosidase activity of Chinese traditionally fermented soybean(douche).Food Chemistry, 103,1091-1096.
Cheng, FC., Lin, A., Feng, JJ., Mizoguchi, T., Takekoshi, H., Kubota, H., Kato, Y.& Naoki, Y.(2004). Effects of chlorella on activities of protein tyrosine phosphatases, matrix metalloproteinases, caspases, cytokine release, B and T cell proliferations, and phorbol ester receptor binding. Journal of Medicinal Food, 7(2), 146-152.
Colbath, GK.& Grenfell, HR. (1995). Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”). Review of Palaeobotany and Palynology, 86, 287-314.
Debabov, VG. (2004). Bacterial and archaeal S-layers as a subject of nanobiotechnology. Molecular Biology, 38(4), 578-591.
Dubois, M., Gilles,KA,, Revers, AP.& Smith, F. (1956). Calorimetric method for determination of sugars and related substance. Analysis Chemistry, 28(4),350-356.
Du, L.& Bao, M. (2005). Plant regeneration from protoplasts isolated from embryogenic suspension cultured cells of Cinnamomum camphora L. Plant Cell Reports, 24,462–467.
Elbein, AD., Legler, G., Tlusty, A., McDowell, W.& Schwarz, R.(1994). The effect of deoxymannojirimycin on the processing of the influenza viral glycoproteins. Archives of Biochemistry and Biophysics, 235, 579—588 .
Fabregas, J., García, D., Morales, E., Domínguez, A.& Otero, A.(1998). Renewal rate of semicontinuous cultures of the Microalga Porphyridium cruentum modifies phycierythrin, exopolysaccharide and fatty acid productivity. Journal of Fermentation and Bioengineering, 86(5), 477-481.
Fenton, DM.& Eveleigh, DE.(1981). Purification and mode of action of a chitosanase from Penicilliium islandium. The Journal of Genernal Microbiology, 126,155-165.
Fu, JY., Wu, SM., Chang, CT.& Sung, HY. (2003).Characterization of three chitosanase isolated from a commercial crude porcine pepsin preparation. Journal of Agricultural and Food Chemistry , 51, 1042-1048.
Fujimura, T., Kawai, T., Shiga, M., Kajiwara, T.& Hatanaka, A. (1989). Regeneration of protoplasts into complete thalli in the marine green algae Ulva pertusa Nippon Suisan Gakkaishi, 55, 1353-1359.
Fujitani, N., Sakaki, S., Yamaguchi, Y.& Takenaka, H. (2001). Inhibitory effects of microalgae on the activation of hyaluronidase. Journal of Applied Phycology, 13,489-492.
Gorbach, SL. (1986). Bengt E. Gustafsson memorial lecture.Function of the normal human microflora. Scandinavian Journal of Infectious Diseases Supplementum, 49,17-30.
Goldin, BR.& Gorbach, SL. (1984).The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. The American journal of clinical nutrition, 39(5),756-761.
Guzmán, S., Gato, A.& Calleja, JM.(2001). Antiinflammatory, analgesic and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. Phytotherapy Research, 15,224-230.
Gessesse, A., Hatti-Kaul, R., Gashe, BA.& Mattiasson, B.(2003). Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme and Microbial Technology, 32, 519-524.
Hamilton, LM., Kelly, CT. & Fogarty, WM. (1998). Raw starch degradation by the non-raw starch-adsorbing bacterial alpha amylase of Bacillus sp. IMD 434. Carbohydrate Research, 314,251-257.
Haberer, P., du-Toit, M., Dicks, LMT., Ahrens, F.& Holzapfel, WH. (2003). Effect of potentially probiotic lactobacilli on faecal enzyme activity in minipigs on a high-fat,high-cholesterol diet-a preliminary in vivo trial. Intemational Journal of Food Microbiology, 87,287-291.
Hazlewood, GP.& Gilbert, HJ. (1993). Molecular biology of hemicellulases. Hemicelluloses and Hemicellulases 103.
Hasegawa, T., Kimura, Y., Hiromatsu, K., Kobayashi, N., Yamada, A., Makino, M., Okuda, M., Sano, T., Nomoto, K.& Yoshikai, Y. (1997). Effect of hot water extract of Chlorella vulgaris on cytokine expression patterns in mice with murine acquired immunodeficiency syndrome after infection with Listeria monocytogenes. Immunopharmacology, 35, 273-282.
Hasegawa, T., Noda, K., Kumamoto, S., Ando, Y., Yamada, A.& Yoshikai, Y. (2000). Chlorella vulgaris culture supernatant (CVS) reduces psychological stress-induced apoptosis in thymocytes of mice. International Journal of Immunopharmacology, 22(11), 877-885.
Hidaka, S., Okamoto, Y.& Arita, M. (2004). A Hot water Extract of Chlorella pyrenoidosa reduces body weight and serum lipids in ovariectomized rats. Phytotherapy Research, 18, 164-168.
Honjoh, KI., Suga, K., Shinohara, F., Maruyama, I., Miyamoto, T., Hatano, S.& Iio, M. (2003). Preparation of protoplasts from Chlorella vulgaris K-73122 and cell wall regeneration of protoplasts from C. vulgaris K-73122 and C-27. Journal of the Faculty of Agriculture, Kyushu University, 47(2), 257-266.
Hosoda, M., Hashimoto, H., He, D., Morita, H.& Hosono, A.(1996).Effects of administration of milk fermented with Lactobacillus acidophilus LA-2 on fecal mutagenicity and microflora in the human intestine. Journal of Dairy Science, 79, 745–749.
Jin, LZ., Ho, YW., Abdullah,N.& Jalaludin, S.(2000). Digestive and Bacterial Enzyme Activities in Broilers Fed Diets Supplemented with Lactobacillus Cultures. Poultry Science, 79,886–891
Johnston, PS., Lebovitz, HE., Coniff, RF. Simonson, DC., Raskin, P. & Munera,CL. (1998). Advantages of alpha-glucosidase inhibition as monotherapy in elderly type 2 diabetic patients. The Journal of Clinical Endocrinology and Metabolism, 83,1515-1522.
Justo, GZ., Silva, MR.& Queiroz, ML. (2001). Effects of the green algae Chlorella vulgaris on the response of the host hematopoietic system to intraperitoneal ehrlich ascites tumor transplantation in mice. Immunopharmacol Immunotoxicol, 23(1), 119-132.
Kim, MJ., Lee, SB., Lee, HS., Lee, SY., Beak, JS., Kim, D., Moon, TW., Robyt, JF. & Park, KH.(1999).Comparative study of the inhibition of α-glucosidase, α-amylase,and cyclomaltodextrin glucanosyltransferase by acarbose, isoacarbose,and acarviosine-glucose. Archives of biochemistry and biophysics, 371,277-283.
Lahaye, M.& Ray, B. (1996). Cell-wall polysaccharides from the marine green alga Ulva “rigida” (Ulvales, Chlorophyta). NMR analysis of ulvan oligosaccharides. Carbohydrate Research , 283, 161-173.
Lowry,OH., Rosebrough, NJ., Farr, AL.& Randall, RJ. (1951). Protein Measurement With The Folin Phenol Reagent. The Journal of Biological Chemistry, 193, 265.
Mallick, N. (2004). Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. Journal of Plant Physiology ,161(5), 591-597.
Matsui, T., Yoshimoto, C., Osajima, K., Oki, T.& Osajima,Y. (1996). In Vitro Survey of α-Glucosidase Inhibitory Food Components. Bioscience, Biotechnology, and Biochemistry, 60, 2019–2022.
Merchant, RE.& Andre, CA. (2001). A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Alternative Therapies in Health and Medicine ,7(3), 79-91.
Miranda, MS., Sato, S.& Mancini-Filho, J. (2001). Antioxidant activity of the microalga Chlorella vulgaris cultered on special conditions. Bollettino chimico farmaceutico ,140(3), 165-168.
Morimoto ,T., Nagatsu, A., Murakami, N., Sakakibara, J., Tokuda, H., Nishino, H.& Iwashima, A. (1995). Anti-tumor-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochemistry ,40, 1433-1437.
Morris, HJ., Carrillo, O., Almarales, A., Bermudez, RC., Lebeque, Y., Fontaine, R., Llaurado, G.& Beltran, Y. (2006). Immunostimulant activity of an enzymatic protein hydrolysate from green microalga Chlorella vulgaris on undernourished mice. Enzyme and Microbial Technology ,7,001-021.
Naidu, AS., Bidlack, WR.& Clemens, RA.(1999). Probiotic spectra of lactic acid bacteria (LAB). Critical Reviews in Food Science and Nutrition,39,13–126.
Ogawa, K., Ikeda, Y.& Kondo, S. (1999). A new trisaccharide, -D-glucopyranuronosyl-(13)- -L-rhamnopyranosyl- (12)--L- rhamnopyranose from Chlorella vulgaris. Carbohydrate Research , 321, 128-131.
Okai, Y., Higashi-Okai, K., Ishizaka, S., Ohtani, K., Matsui-Yuasa, I.& Yamashita, U.(1998).Possible immunodulating activities in an extract of edible Brown alga, Hijikia fusiforme (Hijiki). Journal of the Science of Food and Agriculture, 76, 56-62.
Queiroz, MLS., Rodrigues, APO., Bincoletto, C., Figueirêdo, CAV.& Malacrida, S. (2003). Protective effects of Chlorella vulgaris in lead-exposed mice infected with Listeria monocytogenes. International Immunopharmacology, 3, 889-900.
Pantaleone, D., Yalpani, M.& Scollar, M. (1992). Unusual susceptibility of chitosan to enzymic hydrolysis. Carbohydrate Research, 273, 325-332.
Pugh, N., Ross, SA., Elsohly, HN., Elsohly, MA.& Pasco, DS. (2001). Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Medica , 67, 737-742.
Reddy, CPK., Dipakkore, S., Kumar, GR., Jha, B., Cheney, DP. & Fujita, Y. (2006). An improved enzyme preparation for rapid mass production of protoplasts as seed stock for aquaculture of macrophytic marine green algae. Aquaculture, 260,290–297.
Ray, B.& Lahaye, M. (1995). Cell-wall polysaccharides from the marine green alga Ulva “rigida” (Ulvales, Chlorophyta). Extraction and chemical composition. Carbohydrate Research, 274, 251-261.
Rupérez, P., Ahrazem, O.& Leal, JA. (2002). Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. Journal of Agricultural and Food Chemistry, 50, 840-845.
Saito, N., Sakai, H., Suzuki, S., Sekihara, H. & Yajima, Y. (1998). Effect of an alpha-glucosidase inhibitor(voglibose),in combination with sulphonylureas, on glycaemic control in type 2 diabetes patients.The Journal of International Medical Research, 26,219-232.
Sano, T., Kumamoto, Y., Kamiya, N., Okuda, M.& Tanaka, Y. (1988). Effect of lipophlic extract of Chlorella vulgaris on alimentary hyperlipidemia in cholesterol-fed rats. Artery, 15(4),217-224.
Saarela, M., Mogensen, G., Fonde´n, R., Ma¨tto¨ , J.& Mattila-Sandholm,T. (2000). Probiotic bacteria: safety, functional and technological Properties. Journal of Biotechnology, 84, 197–215.
Schuster, M. (1999).Homoisofagomines :chemical-enzymatic synthesis and evaluation as α-and β-glucosidase inhibitors. Bioorganic & Medicinal Chemistry Letter, 9,615-618.
Shibata, S., Natori, Y., Nishihara, T., Tomisaka, K., Matsumoto, K., Sansawa, H.& Nguyen, VC. (2003). Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes. Journal of Nutritional Science and Vitaminology, 49(5), 334-339.
Shim, YJ., Doo, HK., Ahn, SY., Kim, YS., Seong, JK., Park, IS.& Min, BH. (2003).Inhibitory effect of aqueous extract from the gall of Rhus Chinensis on alpha-glucosidase activity and postprandial blood glucose. Journal of Ethnopharmacology, 85,283-287.
Sonei, S., Hiroyasu, T., Ryu, Y., Hiroyuki, K., Yasuyuki, E.& Yuichi, H. (2001). a-Glucosidase inhibitors with a 4,5,6,7-tetrachlorophthalimide skeleton pendanted with a cycloalkyl or dicarba-closo-dodecaborane group.
Chemical & Pharmaceutical Bulletin, 49(6),791-793.
Takeda, H. (1995). Cell wall composition and taxonomy of symbiotic Chlorella from Paramecium and Acanthocystis. Phytochemistry, 40(2), 457-459.
Tanaka, K., Yamada,A., Noda, K., Shoyama, Y., Kubo, C.& Nomoto, K.(1997). Oral administration of a unicellular green algae, Chlorealla vulgaris, prevents stress-induced ulcer. Planta Medica, 63,465-466.
Tanaka, Y., Okuda, M.& Sonada, M. (1975). The effect of chlorella on the levels of cholesterol and triglyceride in liver and serum. Artery, 1,339-402.
Tokusoglu, O.& Unal, MK. (2003). Biomass nutrient profiles of three microalgae: Sporulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science, 68(4),1144-1148.
Valderrama, LT., Del Campo, CM., Rodriquez, CM., De-Bashan, LE.& Bashan, Y. (2002). Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscule. Water Research, 36,4185-4192.
Wilkins, MR., Widmer, WW., Grohmann, K. & Cameron, RG. (2007). Hydrolysis of grapefruit peel waste with cellulose and pectinase enzymes.Bioresource Technology, 98,1596-1601.
Wilson, KJ., Hughes, SG., & Jefferson, RA.. (1992). The Escherichia coli gus operon: induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria. In S. R. Gallagher (ed.), GUS
protocols: using the GUS gene as a reporter of gene expression. Academic Press, San Diego, Calif.
Wood, TM. (1985). Properties of cellulolytic enzyme systems. Biochemical Society transactions ,13,407-410.
Yaron, A., Cohen, E.& Arad, S.(1992).Stabilization of aloe vera gel by interaction with sulfated polysaccharides from red microalgae and with xanthan gum. Journal of Agricultural and Food Chemistry , 40, 1316-1320.
Yalcin, I.., Hicsasmaz, Z., Boz, B., Bozoglu, F. (1994). Characterization of the extracellular polysaccharide from freshwater microalage Chlorella sp. Lebensmittel-Wissenschaft und-Technologie, 27, 158-165.
Yee, HS. & Fong, NT. (1996). A preview of the safety and efficacy of acarbose in diabetes mellitus. Pharmacotherapy, 16,792-805.
Zitzmann, N., Mehta, AS., Carouee, S., Butters, TD., Platt, FM., Mc- Cauley, J., Blumberg, BS., Dwek, RA.& Block, TM.(1999). Imino sugars inhibit the formation and secretion of bovine viral diarrhea virus, a pestivirus model of hepatitis C virus: Implications for the development of broad spectrum anti-hepatitis virus agents. Proceedings of the National Academy of Sciences, 96, 11878—11882.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top