(3.235.245.219) 您好!臺灣時間:2021/05/07 22:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張瓊文
研究生(外文):Chung-Wen Chang
論文名稱:寡木糖、木糖與蔗糖和加熱處理對於乳清蛋白質抗氧化性質之影響
論文名稱(外文):Effects of Xylooligosaccharides, Xylose, Sucrose, and Heat Treatment on the Antioxidant Activity of Whey Protein
指導教授:王正新王正新引用關係
指導教授(外文):Cheng-Hsin Wang
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2008/05/
畢業學年度:96
語文別:中文
論文頁數:141
中文關鍵詞:蛋白質水解乳清分離蛋白木糖蔗糖寡木糖抗氧化力
外文關鍵詞:protein hydrolysisxylosesucrosewhey protein isolatexylooligosaccharidesantioxidant
相關次數:
  • 被引用被引用:3
  • 點閱點閱:356
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
乳清分離蛋白(whey protein isolate, WPI)具有良好的功能特性、營養價值及保健功能。本研究主要探討乳清分離蛋白(30 mg/mL)添加不同濃度(0、10、20%)蔗糖、木糖、寡木糖經加熱處理及trypsin、papain水解後的組成結構與抗氧化能力。將WPI添加不同濃度蔗糖、木糖、寡木糖後以30-100 ℃加熱處理20分鐘,以Native、SDS-PAGE分析經加熱、酵素處理後蛋白質組成結構之變化。以2,4,6-trinitrobenzene sulfonic acid (TNBS)測定水解程度、5,5’-dithio-bis-2-nitrobenzoic acid (DTNB)測硫氫基含量。利用微脂粒氧化系統和ABTS(2,2’-azinobis-3- ethylbenzothiazolin-6-sulfonic acid)陽離子自由基捕捉法測其抗氧化能力。結果發現未添加糖之WPI抗氧化能力及抑制油脂氧化能力隨著加熱溫度的增加而上升,且與硫氫基含量也呈現正相關。WPI添加糖之其抗氧化能力皆優於未添加糖,其中WPI添加20%木糖具最佳的抗氧化效果。WPI經trypsin、papain水解後可增加ABTS陽離子自由基捕捉能力,添加蔗糖、木糖、寡木糖皆能輔助WPI經trypsin水解後抗氧化力的提升,且WPI添加10%木糖無論以trypsin或papain水解後皆可促使WPI得到更好的抗氧化能力。綜合上述,糖的存在、適當的加熱及酵素水解可提升WPI的抗氧化能力。
Whey protein isolate (WPI) has good functional properties, and nutrition and health benefits. The effects of sugars (sucrose, xylose and xylooligosaccarides), heating temperatures, and enzyme (trypsin and papain) hydrolysis on the structure and antioxidant capacity of WPI were investigated. WPI solutions, in the presence of 0, 10, 20% sucrose, xylose, and xylooligosaccarides, were heated from 30 to 100 ℃ for 20 min. Native and SDS PAGE techniques were used to study the change of WPI composition after heat treatment and enzyme hydrolysis. The content of sulfhydryl groups and the degree of hydrolysis were measured with 5,5’-dithio-bis-2-nitrobenzoic acid (DTNB) and 2,4,6-trinitroenzene sulfonic acid (TNBS) methods, respectively. The antioxidant activity of WPI was determined by measuring the scavenging ability of 2,2’-azinobis
-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) free radicals, and the concentration of TBARS in liposome-oxidizing system. The antioxidant activity of WPI was increased as heating temperature was increased proportional to the sulfhydryl group content. Addition of sugars could increase the antioxidant activity of WPI, and the combination of WPI with 20% xylose showed the best result. The scavenging ability of ABTS‧+ was increased when WPI was hydrolyzed with trypsin and papain. The antioxidant activity of trypsin hydrolysate of WPI was increased in the presence of sugars. Addition of 10% xylose could improve the antioxidant ability of both trypsin and papain hydrolysates of WPI. In conclusion, addition of sugars, heat treatment and enzyme hydrolysis could increase the antioxidant ability of WPI.
中文摘要...................................................Ⅰ
英文摘要...................................................Ⅱ
謝誌......................................................Ⅲ
目錄......................................................Ⅳ
圖目錄.....................................................Ⅷ
表目錄.....................................................Ⅺ
第一章 前言................................................1
第二章 文獻回顧.............................................3
第一節 乳清蛋質.........................................3
一、組成............................................3
二、影響乳清蛋白功能因子..............................7
三、乳清蛋白之功能特性...............................8
四、營養價值.......................................10
五、抗氧化性.......................................10
六、應用性.........................................11
第二節 木糖...........................................11
一、木糖主要特性....................................12
二、木糖在工業上的應用..............................12
第三節 蔗糖...........................................13
一、蔗糖物化特性....................................13
第四節 寡木糖.........................................14
一、寡木糖物化特性..................................14
二、寡木糖生理功能..................................15
三、寡木糖應用性....................................16
第五節 添加糖對蛋白質的影響.............................17
第六節 梅納反應........................................18
一、影響梅納反應因子................................18
二、單、雙糖與胺基酸熱反應之影響......................19
三、梅納反應改善蛋白質特性...........................21
四、梅納反應對各種蛋白質功能特性之影響................21
五、梅納反應在食品上之應用...........................22
第七節 乳清蛋白水解物..................................24
第八節 硫氫基對乳清蛋白之功能影響........................26
第三章 研究目的............................................28
第四章 材料與方法..........................................29
第一節 材料...........................................29
第二節 化學試藥........................................29
第三節 實驗方法........................................30
一、糖液配製.......................................30
二、蛋白質配製.....................................30
三、原態聚丙烯醯胺膠體電泳...........................35
四、十二烷基硫酸納-聚丙烯醯胺膠體電泳.................37
五、醣染色.........................................40
六、蛋白質之硫氫基測定..............................41
七、蛋白質抗氧化之測定..............................43
八、微脂粒氧化作用抑制..............................45
九、水解程度測定....................................48
第四節 統計分析........................................49
第五章 結果與討論..........................................51
第一節 以Native-PAGE觀察添加糖對WPI之影響...............51
一、WPI未添加糖....................................51
二、WPI添加蔗糖....................................52
三、WPI添加木糖....................................60
四、WPI添加寡木糖..................................61
第二節 以SDS-PAGE觀察添加糖對WPI之影響..................68
一、WPI未添加糖....................................68
二、WPI添加蔗糖....................................69
三、WPI添加木糖....................................80
四、WPI添加寡木糖..................................81
第三節 以醣染色法觀察添加糖對WPI之影響...................92
第四節 以TNBS法測定WPI添加不同濃度之水解程度.............94
第五節 以DTNB法測定添加糖對WPI硫氫基之影響...............99
一、WPI經加熱處理後以不同變性劑測定硫氫基含量.........100
二、WPI添加0、10、20%蔗糖經加熱處理以不同變性劑測定硫氫基
含量..........................................100
三、WPI添加0、10%蔗糖經加熱處理以trypsin水解後測定硫氫基
含量..........................................101
第六節 以ABTS陽離子自由基法測定WPI抗氧化力之影響.........109
一、WPI添加0、10、20%蔗糖、木糖及寡木糖對抗氧化能力之影
響...........................................109
二、WPI添加0、10%蔗糖、木糖及寡木糖經酵素水解後對抗氧化能
力之影響......................................112
第七節 以微脂粒氧化作用法測定WPI抗氧化能力之影響..........122
第六章 結論..............................................126
第七章 參考文獻...........................................128
丁懷謙、羅培仁、張長泉、李錦楓。1989。以免疫電泳法定量生乳中之乳清蛋白質。中國農業化學會誌 27(2): 202-208。
包玉蘋。2005。乳糖和蔗糖對牛血清白蛋白結構與物化特性之影響。靜宜大學食品營養學系碩士論文。
田悅、杜軍保。2007。二硫鍵和硫基在蛋白質結構功能中的作用及分析方法。實用兒科臨床雜誌 22(9): 1499-1501。
吳安邦、阮文惠、鄭慧文、林慶文、陳朝洋。1997。鮮乳與還原乳之乳清蛋白分光光度性研究。食品科學 24(2): 178-185。
吳亭瑤。2005。新糖主義:自然、低熱量、促進益菌生長的木寡糖。台北市 棋碁文化發行。
李意娟、曾弘智、吳輔祐。2001。糖化乳清蛋白對貢丸抗氧化之研究。中國畜牧學會會誌 30(3): 187-194。
李鐵剛、付莉。2006。簡述美拉德反應。食品科技 12: 9-11。
李慧、陳敏、李赫、羅永康、戴蘊青。2007。反相高效液相色譜法測定乳清蛋白中的α-乳白蛋白和β-乳球蛋白。色譜 1: 116-117。
金安兒、郭素娟、裘仲元。1996。乳清蛋白質高壓凝膠之探討。中國農業化學會誌 34(3): 323-330。
美國乳品出口協會。2005。乳清蛋白有益於運動愛好者。食品市場資訊 9: 89-91。
秦華明、宗敏華、梁世中。2001。糖在蛋白質藥物冷凍安造過程中保護作用的分子機制。廣東藥學院學報 17(4): 305-307。
張珍田。2001。木寡糖之特性與生理功能。食品工業 33(6): 10-18。
張薇婷。2007。萃取條件和酵素水解對於綠藻蛋白質組成及抗氧化性質之影響。靜宜大學食品營養學系碩士論文。
許人平。1995。單糖、雙糖、糊精和澱粉之梅納反應。食品工業月刊 27(7): 54-6。
郭本恆、駱承庠。1994。乳清蛋白變性的測定方法。中國乳品工業22(5): 221-224。
郭俊欽、劉志俊。2000。小麥蛋白分解物與糖類製成梅納反應物對絞碎豬肉脂肪氧化之影響。東海學報 41: 25-31。
陳明汝、戴廷宇。2006。乳清濃縮蛋白於烘焙食品之影用與產品開發。食品資訊 214: 46-49。
陳明汝。1998。乳清蛋白之利用。德育學報 14: 79-87。
陳俊成。1996。影響濃縮乳清蛋白功能性的因子。食品資訊 124(4): 33-37。
陳俊成。1998。蔗糖之功能性質。食品資訊 150: 56-59。
陳留記、陳宗道、金明鳳。1999。蛋白質的糖基化改性研究進展。食品科學 4: 14-17。
賀東海、趙光輝、聶聖才。2006。木糖的功能特性及應用。中國食物與營養 2: 27-28。
黃炫慈、蔡正宗、郭俊欽。2002。梅納反應產物對烹調豬肉餅的抗氧化及抗菌作用。東海學報 43: 27-37。
劉國信。2007。乳清蛋白在肉類加工中的新應用。肉類研究 97(3): 7, 14。
歐仕益、郭乾初、包惠燕、李愛軍。2003。豆奶蛋白質中硫氫基含量的測定。中國食品學報 3(2): 59-62。
鄭明凡。1999。運動機能性乳清蛋白質。食品資訊 5: 52-57。
盧蓉蓉、李玉美、許時嬰、楊瑞金。2006。以酶法改性乳清蛋白為基質的脂肪替代品在冰淇淋中的應用。食品與機械 5: 23-26。
戴廷宇、胡淑慧、陳明汝。2006。濃縮乳清蛋白取代液全蛋於烘焙產品之應用性。中國畜牧學會會誌 35(4): 249-260。
謝柏如。2003。加熱過程中寡木糖對牛血清白蛋白結構與物化特性之影響。靜宜大學食品營養學系碩士論文。
闕建全。2006。食品化學。新文京開發。
顏國欽、劉美麟。1997。木糖-離胺酸梅納反應產物及其區分物抗氧化特性之研究。中國農業化學會誌 35(3): 273-287。
魏華、楊史良、徐鋒、程波財。2007。乳清蛋白質的生物學特性和保健功能。天然產物研究與開發 19: 161-168。
羅永康、張愛榮。2004。糖基化反應改善蛋白質功能特性的研究進展。食品科技 7: 4-6, 10。
譚世語、黃誠。2006。木糖生產工藝的研究發展。食品科技 12: 103-105。
Abubakar A, Saito T, Kitazawa H, & Kawai T. (1998). Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J Dairy Sci. 81(12): 3131-3138.
Alfawaz M, Smith JS, & Jean IJ. (1994). Maillard reaction products as antioxdants in procooked ground beef. Food Chem. 51: 311-318.
Ames JM, Guy RCE, & Kipping GJ. (2001). Effect of pH and temperature on the formation of volatile compounds in cysteine /reducing sugar/starch mixtures during extrusion cooking. J Agric Food Chem. 49(4): 1885-1894.
Ashoor SH & Zent LB. (1984). Maillard browning of common amino acids and sugars. J Food Sci. 49: 1206-1207.
Baier S & McClements DJ. (2001). Impact of preferential interactions on thermal stability and gelation of bovine serum albumin in aqueous sucrose solution. J Agric Food Chem. 49: 2600-2608.
Bailey ME. (1988). Inhibition of warmed-over flavor with emphasis on Maillard reaction products. Food Tech. 42(6): 123-126.
Baxter H. (1995). Free amino acid stability in reducing sugar systems. J Food Sci. 60: 4405-407.
Bedinghaus AJ & Ockerman HW. (1995). Antioxidative Maillard reaction products from reducing sugars and free amino acid in cooked ground pork patties. J Food Sci. 60: 992-995.
Benjakula S, Lertittikul W, & Bauer F. (2005). Antioxidant activity of Maillard reaction products from a porcine plasma protein–sugar model system. Food Chem. 93(2): 189-196.
Best TM, Fiebig R, Corr DT, Brickson S, & Ji L. (1999). Free radical activity, antioxidant enzyme, and glutathione changes with muscle stretch injury in rabbits. J Appl Physiol. 87(1): 74-82.
Beveridge T, Toma SJ, & Nakai S. (1974). Determination of SH- and SS- groups in some food protein using ellman’s reagent. J Food Sci. 39:50-51.
Bonomi F & Fiocchi A. (2003). Reduction of immunoreactivity of bovine beta-lactoglobulin upon combined physical and proteolytic treatment. J Dairy Res. 70(1): 51-59.
Caccavo D. (2002). Review: Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res. 8(6): 403-417.
Cassens PW & Visser S. (1999). Beta-lactoglobulin hydrolysis. 1. Peptide composition and functional properties of hydrolysates obtained by the action of plasmin, trypsin , and Staphylococcus aureus V8 protease. J Agric Food Chem. 47(8): 2973-2979.
Cavestro GM, Ingegnoli AV, Aragona F, Iori V, Mantovani N, Altavilla N, DalBò N, Pilotto A, Bertelè A, Franzè A, Di Mario F, & Borghi L. (2002). Lactoferrin: mechanism of action, clinical significance and therapeutic relevance. Acta Biomed. 73(5-6): 71-73.
Chevalier F, Chobert JM, Genot C, & Haertlé T. (2001). Scavenging of free radicals, and cytotoxic activities of the Maillard reaction products of β-lactoglobulin glycated with several sugars. J Agric Food Chem. 49: 5031-5038.
Chiang SH & Chang CY. (2005). Antioxidant Properties of Caseins and Whey Proteins from Colostrums. 藥物食品分析 13(1): 57-63, 99.
Clare DA & Swaesgood HE. (2000). Bioactive milk peptide: a prospectu -s. J Dairy Sci. 83:1187-1195.
Courthaudon JL, Girardet JM, Campagne S, Rouhier LM, Campagna S, Linden G, & Lorient D. (1999). Surface active and emulsifying properties of casein micells compared to those of sodium caseinate-bovine micellar casein. Int Dairy J. 9(3): 411-412.
Crowe JH, Crowe LM, Carpenter JF, Rudolph AS, Wistrom CA, Spargo BJ, & Anchordoguy TJ. (1988). Interaction of sugars with membranes. Biolchim Biophys Acta. 947(2): 367-384.
Damodaran S. (1985). Estimation of disulfide bonds using 2-nitro-5- thiosulfobenzoic acid: limitations. Analytical Biochem. 200-204.
Davidek J, Velisek J, & Pokorny J. (1990). Chemical changes during food processing. Elsevier, Amsterdam, The Netherlands. 58.
deRham & Chanton S. (1984). Role of ionic environment in insolubilization of whey protein during heat treatment of whey products. J Dairy Sci. 67: 939-949.
Dogan I, Sreenken S, Schulte-Frohlinde D, & Icli S. (1990). Electron spin resonance and pulse radiolysis studies in the reaction of OH‧ and SO4- with five-membered heterocyclic compounds in aqueous solution. J Phys Chem. 94: 1887-1894.
Donnelly JL, Decker EA, & McClements DJ. (1998). Ability of emulsifiers to influence iron-catalyzed oxidation of emulsified menhaden oil. J Food Sci. 63:997.
Ebringerova A & Heinze T. (2000). Xylan and xylan derivatives -biopolymers with valuable properities. Rapid Commun. 21: 542-556.
Eichner K. (1981). Antioxidative effect of Maillard reacton intermediate. Prog. Food Nutr Sci. 5: 441-451.
Einarsson H. (1987). The effect of time, temperature, pH and reactants on the formation antibacterial compounds in the maillard reaction. Lebensm Wiss Technol. 20: 51-55.
Eiserich JP & Shibamoto T. (1994). Antioxidative activity of volatile heterocyclic compounds. J Agric Food Chem. 42: 1060-1063.
Elizalde BE, Dalla Rosa M, & Lerici CR. (1991). Effect of Maillard reaction volatile products in lipid oxidation. J Am Oil Chem. Soc. 68: 758-762.
Evans CD, Mosa HA, Cooney PM, & Hodge JE. (1958). Amino-hexose reductones as antioxidants. I. Vefetable oils. J Am Oil Chem. Soc., 35: 84-88.
Fan ZH & Nan QX. (2000). The protective effects of milk protein and prptides. Chin Dairy Indus. 28(5): 18-21.
Floris R, Recio I, Berkhout B, & Visser S. (2003). Antibacterial and antiviral effects of milk proteins and derivatives thereof. Curr Pharm Des. 9(16): 1257-1275.
Franzke C & Iwainsky H. (1954). Antioxidant capacity of melanoidin. Dtsch Lebensmitt Rundsch. 50: 251-254.
Fujiwara K, Oosawa T, & Saeki H. (1998). Improved thermal stability and emulsifying properties of carp myofibrillar proteins by conjugation with dextran. J Agric Food Chem. 46(4): 1257-1261.
Haque Z & Kito M. (1981). Lipophilization of alpha s1-casein covalent attachment of palmitoyl residue. J Agric Food Chem. 31(6): 1225-1230.
Harwalkar VR. (1980). Measurement of thermal denaturation of ß-lactoglobulin at pH 2.51. J Dairy Sci. 63(7): 1043-1051.
Hattori M, Numamoto K, Kobayashi K, & Takahashi K. (2000). Functional changes in β-lactoglobulin by conjugation with cationic saccharides. J Agric food Chem. 48: 2050-2056.
Havea P, Singh H, & Creamer K. (2000). Formation of new protein structures in heated mixtures of BSA and α-lactalbumin. J Agric Food Chem. 48:1548-1556.
Hayase F, Hirashima S, Okamoto G, & Kato H. (1989). Scavenging of active oxygens by melanoidins. Agric Biol Chem. 53: 3383-3385.
Hiroyuki T, Kazunori S, Ken-ichi F, & Masaaki I. (2002). Cancer prevention by bovine lactoferrin and underlying mechanisms a review of experimental and clinical studies. Biochem Cell Bio. 80: 131-136.
Ishi T, Ishimori H, Mori K, Uto T, Fukuda K, Urashima T, & Nishimura M. (2007). Bovine lactoferrin stimulates anchorage-independent cell growth via membrane-associated chondroitin sulfate and heparan sulfate proteoglycans in PC12 cells. J Pharmacol Sci. 104(4): 366-373.
Kato A, Mifuru R, Matsudomi N, & Kobayashi K. (1992). Functional casein-polysaccharide conjugates prepared by controlled dry heating. Biosci Biotechnol Biochem. 56(4): 567-571
Kato A, Minaki K, & Kobayashi. (1993). Improvement of emulsifying properties of egg white proteins by the attachment of polysaccharide through Maillard reaction in a dry state. J Agric Food Chem. 41(4): 540-543.
Kato A, Murata K, & Kobayashi K. (1988). Preparation and characterization of ovalbumin-dextran conjugate habing excellent emulsifyin properties. J Agric Food Chem. 36(3): 421-425.
Kato A, Sasaki Y, Furuta R, & Kobayashi K. (1990). Functional protein- polysaccharide conjugate prepared by controlled dry-heating of ovalbum in-dextran mixtures. Agric Biol Chem. 54(1): 107-112.
Kato Y, Aoki T, Kato N, Nakamura R, & Matsuda T. (1995). Modification of ovalbumin with Glucose 6-Phosphate by Amino-Carbonyl reaction: Improvement of protein heat stability and emulsifying activity. J Agric Food Chem. 43(2): 310-305.
Kato Y, Watanabe K, & Sato Y. (1981). Effect of maillard reaction on some physical properties of ovalbumin. J Food Sci. 46(6): 1835-1839.
Kawashima k, Ioth H, & Chibata I. (1977). Antioxidant activity of browning products prepared from low molecular carbonyl compounds and amino acids. J Agric Food Chem. 25: 202-204.
Kawashima K, Itoh H, & Chibata I. (1981). Antioxidant effect of pepetide in combination with sugar on autoxidant if edible oils. Agric Biol Chem. 45: 987-988.
Kim SB, Hayase F, & Kato H. (1985). Decolorization and degradation products of melanoidins on ozonlysis. Agric Biol Chem. 49: 785-792.
Kitabatake N, Cuq JL, & Cheftel JC. (1985). Covalent binding of glycosyl residues to beta-lactoglobulin effect on solubility and heat stability. J Agric Food Chem. 33(1): 125-130.
Kushibiki S, Hodate K, Kurisaki J, Shingu H, Ueda Y, Watanabe A, & Shinoda M. (2001). Effect of beta-lactoglobulin on plasma retinol and triflyceride concentrations, and fatty acid composition in calves. J Dairy Res. 68:579-586.
Legrand D, Elass e, Carpentier M, & Mazurier J. (2006). Interactions of lactoferrin with cells involved in immune function. Biochem Cell Biol. 84(3): 282-290.
Legrand D, Pierce A, Elass E, Carpentier M, Mariler C, & Mazurier J. (2008). Lactoferrin structure and functions. Adv Exp Med Biol. 606: 163-194.
Lemon PW. (1995). Do Athletes need more dietary protein and amino acids? J Int Soc Sports Nutr. 5: 39-61.
Lemon PW. (2000). Beyond the zone: protein needs of active individuals. J Am Coll Nutr. 19: 512-521.
Lingnert H & Hall G. (1986). Formation of antioxidative Maillard reaction products during food processing. Dev Food Sci. 13: 273-279.
Loo JV. (1999). Functional food properties of non-digestible oligosaccharides. Brit J Nutr. 81: 121-132.
Maes W, Van Camp J, & Vermeirssen V. (2006). Influence of the lactokinin Ala-Leu-Pro-Met-His-Ile-Arg(ALPMHIR) on the release of endothelin-1 by endothelial ells. Regul Pept. 15(118): 105-109.
Makoto H, Koki O, & Koki O. (2000). Reduced immunogenicity of β- lactoglobulin by conjugation with carboxymethy dextran. Bioconjug Chem. 11: 84-93.
Manabu T & Saeki H. (2001). Effect of maillard reaction with glucose and ribose on solubility at low ionic strength and filament-forming ability of fish myosin. J Agric Food Chem. 49:3403-3407.
Marsh JW, Denis J, & Wriston JC. (1977). Glycosylation of Escherichia coli L-asparaginase. J Biol Chem. 252: 7678-7684.
Matsudomi N, Tsujimoto T, Kato A, & Kobayashi K. (1994). Emulsifying and bactericidal properties of a protamine-galactomannan conjugate prepared by dry heating. J Food Sci. 59(2): 428-431.
Mattarella NL, Creamer LK, & Richardson T. (1983). Amidation or esterification of bovine beta-lactoglibulin to form positively charged protein. J Agric Food Chem. 31(5): 968-972.
Maynes JR & Krochta JM. (1994). Properties of edible films from total milk protein. Food Sci. 4: 909-911.
McCarthy TL, Kerry JP, Kerry JF, Lynch PB, & Buckley DJ. (2001). Assessment of the antioxidant potential of natural food and plant extracts in fresh and previously frozen pork patties. Meat Sci. 57: 177-184.
McComas KA & Gilland SE. (2003). Growth of probiotic and traditional yogurt cultures in milk supplemented with whey protein fydrolysate. J Food Sci. 68(6): 2090-2095.
McDonald RE & Hultin HO. (1987). Some characteristics of the enzymic lipid peroxidation system in the microsomal fraction of flounder skeletal muscle. J Food Sci. 52(1): 15-27.
McHugh TH & Krochta JM. (1994). Sorbitol- vs Glycerol-Plasticized whey protein Edible Films: Intgerated oxygen Permeability and tensile property evaluation. J Agric Food Chem. 42(2): 841-845.
Micke P, Beeh KM, & Buhl R. (2002). Effects of long-term supplementation with whey proteins on plasma glutathione levels of HIV-infected patients. Eur J Nutr. 41(1): 12-18.
Micke P, Beeh KM, Schlaak JF, & Buhl R. (2001). Oral supplementation with whey proteins increases plasma glutathione levels of HIV-infected patients. Eur J Clin Invest. 31(2):171-178.
Nagaoka S, Futamura Y, Miwa K, Awano T, & aamauchi K. (2001). Identification of novel hypocholesterolemic pepetides derived from bovine milk beta-lactoglobulin. Biochem Biophys Res Commun. 281(1): 11-17.
Naranjo GB, Malec LS, & Vigo MS. (1998). Reducing sugars effect on available lysine loss of casein by moderate heat treatment. Food Chem. 62: 309-313.
Nau FO, Pasco M, Sert CD, & Molleä D. (2005). Identification and characterization of ovalbumin gene yin hen egg white. J Agric Food Chem. 53: 2158-2163.
Nissen JA. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem. 27(8): 1256-1262.
Owusu-Apenten R. (2005). Colorimetric analysis of protein sulfhydyl groups in milk: applications and processing effects. Crit Rev Food Sci Nutr. 45(1): 1-23.
Pellegtini A, Dettling C, & Thomas U. (2001). Isolation and characteri -zation of four bactericidal domains in the bovine beta-lactoglobullin. Biochim Biophys Acta. 1526(2): 131-140.
Peña-Ramos EA & Xiong YL. (2001). Antioxidative activity of whey protein hydrolysis in a liposomal system. J Dairy Sci. 84: 2577-2583.
Peña-Ramos EA & Xiong YL. (2002). Antioxidant activity of soy protein hydrolysates in a liposomal system. J Food Sci. 67(8): 2952-2956.
Peña-Ramos EA & Xiong YL. (2003). Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Sci. 64: 259-263.
Re R, Pellegrini N, Proteggente A, Pannala A, Yand M, & Rice-Evans C. (1999). Antioxidant activity applying an mproved ABTS radical cation decolorization assay. Free Radic Biol Med. 26(9-10): 1231-1237.
Rich LM & Foegeding EA. (2000). Effects of sugars on whey protein isolate gelation. J Agric Food Chem. 48: 5046-5052.
Saeki H & Inoue K. (1997). Improved solubility of carp myofibrillar proteins in low ionic strength medium by glycosylation. J Agric Food Chem. 45: 3419-3422.
Saeki H. (1997). Preparation of neoglycoprotien from carp myofibrillar protein by maillard reaction with glucose: biochemical properties and emulaifying properties. J Agric Food Chem. 45:680-648.
Sato R, Sawabe T, Kishimura H, Hayashi K, & Saeki H. (2000). Preparation of neoglycoprotein from carp myofibrillar protein and alginate oligosaccharide: Improved solubility in low ionic strength medim. J Agric Food Chem. 48(1): 17-21.
Seberin S & Xia WS. (2006). Enzymatic hydrolysis of whty protein by two different proteases and their effect on the functional properties of resulting protein hydrolysates. J Food Biochem. 30(1): 77-97.
Sen LC, Lee HS, Feeney RE, & Whitaker JR. (1981). In vitro digestibility and function properties of chemically modified casein. J Agric Food Chem. 29(2): 348-353.
Shan T, Wang Y, Liu J, & Xu Z. (2007). Effect of dietary lactoferrin on the immune functions and serum iron level of weanling piglets. J Anim Sci. 85(9): 2140-2146.
Svensson M, Sabharwal H, Håkansson A, Mossberg AK, Lipniunas P, Leffler H, Svanborg C, & Linse S. (1999). Molecular characteri -zation of -lactalbumin folding variants that induce apoptosis in tumor cells. J Biol Chem. 274:6388-6396.
Takase K & Kakuta I. (2007). Lactoferrin reduces physiological dysfunctions of goldfish induced by chemotherapeutic agents. Yakugaku Zasshi. 127(9): 1449-1460.
Tanaka M, Chiba N, Ishizaki S, Takai R, & Taguchi T. (1994). Influence of water activity and Maillard reaction on the polymerization of myosin heavy chain in freeze-dried squid meat. Fish Sci. 60: 607-611.
Tanaka M, Chui WK, Nagashima Y, & Taguchi T. (1990). Development of antioxidative effect during the Maillard reaction between tryptophan and glucose. J Tokyo Univ Fish. 77: 33-41.
Thannhauser TW, Konishi Y, & Scheraga HA. (1984). Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins. Anall Biochem. 138: 181-188.
Tong LM, Sasaki S, McClement J, & Decker EA. (2000). Mechannisms of the antioxidant activity of a high molecular weight fraction of whey. J Agric Food Chem. 48(5): 1473-1478.
Tsubota A, Yoshikawa T, Nariai K, Mitsunaga M, Yumoto Y, Fukushima K, Hoshina S, & Fuhise K. (2008). Bovine lactoferrin potently inhibits liver mitochondrial 8-OHdG levels and retrieves hepatic OGG1 activities in Long-Evans Cinnamon rats. J Hepatol. 48(3): 486-493.
Tybor PT, Dill CW, & Landmann WA. (1973). Effects of decolorization and lactose incorporation on the emulsification capacity of spraydried blood protein concentrates. J Food Sci. 38(1): 4-6.
Van Boekel MAJS. (1998). Effect of heating on Maillard reactions in milk. Food Chem. 62: 403-414.
van der Ven C, Gruppen H, de Bont DBA, & Voragen AGJ. (2002). Correlations between biochemical characteristics and foam-forming and -stabilizing ability of whey and casein hydrolysates. J Agric Food Chem. 50(10): 2938-2946.
Watanabe M, Shimada A, Yazawa E, Kato T, & Arai S. (1981). Proteinaceous surfactants produced form gelatin by wenzymatic: Application to Preparation of Food Items. J Food Sci. 46(6): 1738-1740.
Watanabe M, Toyokawa H, Shimada A, & Arai S. (1981). Proteinaceous surfactants produced from gelatin by wnzymatic modification: Evaluation for their function. J Food Sci. 46(5): 1467-1469.
Watanabe T, Kitabatake N, & Doi E. (1994). Method for the accurate measurement of freezing-induced denaturation of ovalbumin with 5,5’-dithiobis-(2-nitrobenzoic acid). Biosci Biotechnol Biochem. 58(2): 358-362.
Wekler TL, Lim C, Tildirim-Aksoy M, & Klesius PH. (2007). Growth, immune function, and disease and stress resistance of juvenile Nile tilapia (Oreochromis niloticus) fed graded levels of bovine lactoferrin. Aquaculture. 262(1): 156-162.
Wijewickreme AN & Kitts DD. (1997). Influence of reactions on the oxidative behavior of model Maillard reaction products. J Agric Food Chem. 45: 4571-4576.
Wong CW, Liu AH, Regester GO, Francis G, & Watson D. (1997). Influence of whey and purified whey proteins on neutrophil functions in sheep. J Dairy Res. 64(2): 281-288.
Wong CW, Seow HF, Husband AJ, Regester GO, & Watson DL. (1997). Effects of purified bovine whey factors on cellular immune functions in ruminants. Vet Immunol Imunopathol. 56(1-2): 85-96.
Yamul DK & Lupano CE. (2005). Whey protein concentrate gels with honey and wheat flour. Food Res. Intern. 38: 511-522.
Yen G & Hsieh P. (1995). Antioxidative activity and scavenging effects on active oxygen of xylose–lysine Maillard reaction products. J Sci Food Agric. 67: 415-420.
Yoshimura y, Iijima T, Watanabe T, & Nakazawa H. (1997). Antioxidative effect of Maillard reaction products using glucose–glycine model system. J Agric Food Chem. 45: 4106-4109.
Zimecki M, Artym J, Chodaczek G, kociebaM, Kuryszko J, Houszka M, & Kruzel ML. (2007). Immunoregulatory function of lactoferrin in immunosuppressed and autoimmune animals. Postepy Hig Med Dosw. 61: 283-287.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔