跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊秋瑩
研究生(外文):Chiu-Ying Zhuang
論文名稱:霍亂弧菌O139進入活而不長過程中基因表現之系統分析
論文名稱(外文):The Differential Gene Expression of Vibrio cholerae O139 in the Viable But Non-Culturable State
指導教授:宋宏紅宋宏紅引用關係路光予路光予引用關係
指導教授(外文):Hung-Hung Sung
學位類別:碩士
校院名稱:東吳大學
系所名稱:微生物學系
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:124
中文關鍵詞:活而不長霍亂弧菌O139 菌株核糖體核糖核酸操縱組
外文關鍵詞:Viable but non-culturableVibrio choleraeO139 strain ribosomal
相關次數:
  • 被引用被引用:2
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
「活而不長」 (viable but non-culturable,簡稱VBNC)是指菌體類似休眠的一種狀態,在實驗室常規培養基上無法形成菌落,但菌體仍是活的而非處於死亡狀態。霍亂弧菌O139 (Vibrio cholerae O139)於低溫低養分狀態下,可進入VBNC狀態。由於目前對於菌體如何進入與維持VBNC狀態之分子層面的機制尚未了解。因此,本研究之目的是藉由抑制性扣減雜交(Suppression Subtractive Hybridization;SSH )方法,篩選出可能調控霍亂弧菌O139進入VBNC狀態相關的基因;且藉由建構O139菌株完全進入VBNC狀態後表現基因之基因庫,篩選菌體維持此狀態之相關基因。並利用基因微陣列分析結構基因的差異表現。
SSH結果顯示,目前篩選到的差異性表現基因為rRNA;至於O139菌株完全進入VBNC後,由基因庫所篩選到仍會表現的基因亦均為rRNA。目前已知霍亂弧菌O1菌株具有八套rDNA操縱組,分別為a~h。為了解此八套rDNA的序列是否有差異,故將霍亂弧菌O1菌株的八套rDNA操縱組與三株Vibrio spp.進行序列相似性比對,由樹狀圖結果推知O1菌株的16S rRNA的序列相似性可分為a、c、g和h(群組I)、b(群組II)以及 d、e和f(群組III)三群,而23S rRNA的序列相似性較高。由O139菌株篩選到的rRNA之cDNA序列與O1菌株的八套rDNA序列比對,相似度皆高達98%以上,推測O139菌株亦有此八套rDNA操縱組。
分析不同階段O139菌株篩選到的rRNA之cDNA序列後發現,O139菌株進入VBNC狀態後,其八套rDNA操縱組的表現有差異,其中16S rRNA差異較大,且不同套間的16S rRNA差異亦如O1的16S rDNA序列相似性樹狀圖。在SSH實驗篩選到的所有16S rRNA之cDNA序列中,比對到群組I和II者的百分比為75.2%,群組III(但不含16Sd)者為12%。在O139菌株完全進入VBNC後的rRNA之cDNA序列分析結果中,同時比對到群組I和II者最多(62.3%),群組III(但不含16Sd)者為19%。由這些結果可推測,O139菌株於VBNC轉換時期與完全進入VBNC狀態的這兩階段之rRNA基因相似性群組表現有差異;前者表現群組I和II的比例較高,但群組III(但不含16Sd)的表現比例低於後者。由上述分析結果,推測霍亂弧菌O139進入VBNC過程中,可能經由不同套的rRNA進行某些特殊蛋白質的合成,以因應VBNC生理狀態的改變。
以基因微陣列的方法,分析霍亂弧菌的3835個結構基因,結果顯示有53.72%的基因於誘導第16天表現量上升,而有12.2%的基因則是下降,維持不變的則有34.08%;誘導第46天表現量上升基因則佔53.85%,而有12.88%的基因表現量是下降,維持不變的則有33.27%。未知功能的基因中,於誘導16天及46天表現量上升的基因分別佔62.1%及60.08%,維持不變的基因分別佔29.64%及30.56%,下降的基因則佔8.26%及9.36%。依基因功能分類,其中與合成蛋白質功能相關之基因,多數的表現量是下降,而與能量代謝功能相關之基因,表現量上升及下降並無明顯差異外,其餘功能的基因於誘導16天及46天表現量上升的基因都較下降的基因來的多。
“Viable but non-culturable” (VBNC) represents a state of dormancy and bacteria can't be cultured by conventional laboratory culture methods. However, bacteria exhibit detectable metabolic function. Vibrio cholerae O139 undergoes the VBNC state by starvation at low temperature. So far, it is still under researched that the molecular mechanisms of transition state in VBNC cells. In this study, two aims were investigated. First was using the method of suppression subtractive hybridization (SSH) to identify differentially expressed genes, which might be important for transition state, between normal type and 16 days-induced VBNC cells. Second was constructing the gene library of the expression genes, which might be important for maintaining cell viability of 46 days-induced VBNC cells. In both experiments, only the cDNA of rRNA were identified so far.
The Vibrio cholerae O1 strain contains eight rDNA operons (a~h), and the differences between those operons were investgated by comparing with V. cholerae O395 strain and two serotypes of V. vulnificus strains. Acrroding to the result, the differences between the eight sequences of 16S rDNA were more obvious than 23S rDNA in O1 strain. The eight sequences of 16S rDNA were grouping into three groups. Group I contained a、c、g and h. Group II contained only b, and d、e and f were included in group III. Comparing the cDNA sequences of rRNA, which were cloned from O139 strain with O1, the identity was more than 98%. Suggesting that O139 stain contained eight rRNA operons as well and the differences among those sequences were just as O1 strain exhibited. After analysising the cDNA cloned from VBNC cells, the differentially expression of rDNA operon were observed under two different conditions. In the transient stage of VBNC, the expression percentage of both group I and II was 75.2% and group III (except 16Sd) was 12%. In 46 day-induced sample, the expression percentage of both group I and II was 62.3% and group III (except 16Sd) was 19%. Comparing the 16 day-induced and 46 day-induced VBNC cells, the differentially expression of rDNA operons were observed. Meanwhile, the expression efficiency of group I and II in 16 day-induced VBNC cells were higher than 46 day-induced VBNC cells', but the group III (except 16Sd) was contrary. These results suggested that rDNA operons of V. cholerae O139 strain were regulated in several manners and some were adjusted according to the VBNC state.
We compared the global transcription pattern of the VBNC cells with that of late log-phase cells grown in rich medium. From the total 3835 genes (all structure genes), 53.72% genes were up-regulated by more than 2-fold cell, 12.2% genes were down-regulated by lower than 0.5-fold and 34.08% genes were no difference in the 16 day-induced VBNC cell. Beside, 53.85% genes were up-regulated by more than 2-fold, 12.88% genes were down-regulated by lower than 0.5-fold and 34.08% genes were no difference 33.27% in the 46 day-induced VBNC cell. From the total unknown function genes, 62.1% genes were up-regulated, 8.26% genes were down-regulated and 29.64% genes were no difference in the 16 day-induced VBNC cell. 60.08% genes were up-regulated, 9.36% genes were down-regulated and 30.56% genes were no difference in the46 day-induced VBNC cell. According to the gene function, those genes could be grouped into 16 parts. The percentage of up-regulated genes were far higher than down-regulated genes in whole parts except for those responsible for energy metabolism and protein synthesis.
目錄
中文摘要 1
英文摘要 4
壹、前言 7
貳、文獻回顧 10
一、細菌活而不長(viable but nonculturable;VBNC)狀態 10
(一) VBNC狀態的發現與提出 10
(二) 在VBNC狀態下細菌是活著的證據 11
1 VBNC時期之菌體仍能進行基因的表現與蛋白質的合成 11
2 VBNC時期之菌體仍能進行呼吸作用 12
3 VBNC時期菌體之細胞膜仍具完整性及功能性 13
4 VBNC時期的細菌可以恢復至可培養的狀態 13
5 VBNC時期之菌體仍具有致病力 14
(三) 影響菌體進入VBNC時期之環境因子 14
1 養分 15
2 溫度 15
3 鹽度 15
4 誘導進入VBNC狀態前之細菌的生理狀況 16
(四) 進入VBNC時期之菌體生理狀態的改變 16
1. 可培養能力的喪失 16
2. 外型的改變 16
3. 其它生理狀態的改變 17
(五) 處於VBNC狀態下之菌體的偵測及計數 17
1. 直接活菌計數(direct viable count;DVC) 18
2 偵測菌體的呼吸作用 18
3 核酸染色法 18
4. 其他方法 19
二、霍亂弧菌(Vibrio cholerae) 19
(一)霍亂弧菌之特性與流行病學 19
(二)霍亂弧菌之基因體學的研究 21
(三) VBNC狀態下的霍亂弧菌 23
(四) VBNC時期霍亂弧菌分子層面的改變 23
1. 蛋白質層面 23
2. 基因層面 24
三、 細菌不同生長狀態轉換的分子機制 27
(一) Sigma factor 27
(二) Ribosomal RNA 28
叁、實驗目的與策略 30
實驗架構 92
肆、材料與方法 31
一、霍亂弧菌O139的培養與保存 31
二、活而不長狀態的實驗 31
(一) 河水樣本的準備 31
(二) 霍亂弧菌O139活而不長狀態的誘導 32
(三) 菌數計數 32
1. 塗抹法 32
2. 活菌直接計數法 32
三、霍亂弧菌O139 之全RNA製備與分析 33
(一) 萃取全 RNA 33
(二) 全RNA的分析 34
1. 全RNA之RNAase-free DNase I作用 34
2. RNA瓊酯膠體電泳 35
3. 以RNA為模板之PCR反應 35
4. DNA瓊酯膠體電泳 36
四、抑制性扣減雜交 36
(一) 合成第一股cDNA 37
(二) 合成第二股cDNA 38
(三) 限制酶Rsa I之切割 38
(四) 接合子與檢測組的cDNA黏合 39
(五) 第一次雜合反應 39
(六) 第二次雜合反應 40
(七) 核酸聚合酵素連鎖反應 40
(八) 扣減效率檢驗 41
五、質體轉殖方法 42
(一) cDNA的轉殖 42
(二) 轉型 42
(三) 陽性轉型株的篩選 43
(四) 限制酶切割圖譜分析 43
六、霍亂弧菌O139完全進入VBNC時期表現基因之基因庫建立 44
(一) cDNA之製備 44
(二) 限制酶SmaI切割載體 44
(三) 雙股cDNA去磷酸化 45
(四) 雙股cDNA與載體之接合 46
(五) 轉型作用與轉型株之篩選 46
七、cDNA序列的比對與分析 46
(一) cDNA序列比對 47
(二) 霍亂弧菌0139不同套之Ribosomal RNA的序列相似性分析 47
八、基因微陣列 47
伍、結果 48
一、霍亂弧菌O139活而不長狀態的誘導 48
二、不同VBNC時期之霍亂弧菌O139 全 RNA的製備與分析 48
三、霍亂弧菌O139經低溫低養分誘導第16天之抑制性扣減雜交 48
(一) 雙股cDNA的製備 48
(二) 扣減後cDNA的檢測 49
(三) 扣減後cDNA基因庫的建立 49
四、霍亂弧菌O139完全進入VBNC時期表現基因之基因庫建立 50
(一)雙股cDNA的製備與轉殖 50
(二) VBNC時期表現基因之基因庫 51
五、cDNA序列的比對 52
六、Ribosomal RNA的序列相似性分析 52
七、不同套的rRNA差異表現之分析 53
(一) 差異性表現基因之分析 53
(二) 完全進入VBNC時期之表現基因的分析 54
八、基因微陣列 55
伍、討論 58
一、Ribosomal RNA 之差異性表現 58
二、基因微陣列 62
陸、參考文獻 66
表 80
圖 92
附錄 109

圖表目錄
表一、霍亂弧菌O139經低溫飢餓誘導進入活而不長狀態的活菌數計 80
表二、差異性表現基因之分析(16S rRNA) 81
表三、差異性表現基因之分析(23S rRNA) 83
表四、差異性表現基因之分析結果總整理 84
表五、完全進入VBNC時期之表現基因的分析(16S rRNA) 85
表六、完全進入VBNC時期之表現基因的分析(23S rRNA) 89
表七、完全進入VBNC時期之表現基因的分析結果總整理 90
表八、本研究所選用之專一性引子 91
圖一、本研究實驗架構流程圖 92
圖二、霍亂弧菌O139經低溫飢餓誘導進入VBNC過程中螢光染色結果 93
圖三、霍亂弧菌O139之RNA電泳分析 94
圖四、霍亂弧菌O139經低溫飢餓誘導16天之cDNA電泳分析圖. 95
圖五、霍亂弧菌O139經低溫飢餓誘導46天之cDNA電泳分析圖 96
圖六、霍亂弧菌O139經低溫飢餓誘導不同天數之基因表現 97
圖七、抑制性扣減雜交後之基因庫分析 98
圖八、霍亂弧菌O139誘導46天表現基因之基因庫分析 99
圖九、霍亂弧菌 O1不同套之16S rRNA序列相似性比對結果 100
圖十、霍亂弧菌 O1不同套之23S rRNA序列相似性比對結果 102
圖十一、Vibrio spp.的不同套16S rRNA序列相似性之樹狀圖 105
圖十二、Vibrio spp.的不同套23S rRNA序列相似性之樹狀圖 106
圖十三、cDNA序列與霍亂弧菌 O1的八套rRNA比對示意圖 107
圖十四、霍亂弧菌O139差異性表現之基因依基因功能分類結果圖108
陳志昆,活而不長型之霍亂弧菌O139的研究,91年7月。
徐霈君,活而不長型之霍亂弧菌O139的研究,93年9月。
張啟倫,霍亂弧菌O139進入活而不長時期,推測為表現增加之蛋白質相關基因表現變化的研究,96年七月。
楊于萱,霍亂弧菌O139進入活而不長時期推測為新合成之蛋白質相關基因表現變化的研究,96年七月。
Abe, A., E. Ohashi, H. Ren, T. Hayashi, H. Endo. 2006. Isolation and characterization of a cold-induced nonculturable suppression mutant of Vibrio vulnificus. Microbiol Res. 162: 130-138.
Amy, P., C. Pauling, and R. Morita. 1983. Starvation-survival processes of a marine vibrio. Appl Environ Microbiol. 45: 1685-1690.
Asakura, H., A. Ishiwa, E. Arakawa, S. Makino, Y. Okada, S. Yamamoto, and S. Igimi. 2006. Gene expression profile of Vibrio cholerae in the cold stress-induced viable but non-culturable state. Environ Microbiol. 9: 869-879.
Ban, N., P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science. 289:905-920.
Banin, E., T. Israely, A. Kushmaro, Y. Loga, E. Orr, and E. Rosenber. 2000. Penetration of the coral-bleacing bacterium Vibrio shiloi into Oculina patagonica. Appl. Environ. Microbiol. 66:3031-3036.
Beumer, R. R., J. Vries, F. M. Rombouts. 1992. Campylobacter jejuni non-culturable coccoid cells. Intern. J. Food Microbiol. 15:153-163.
Bleve, G., L. Rizzotti, Dellaglio F., S. Torriani. 2003. Development of reverse transcription (RT)-PCR and real-time RT-PCR assays for rapid detection and quantification of viable yeasts and molds contaminating yogurts and pasteurized food products. Appl Environ Microbiol. 69:4116-4122.
Boaretti M., M. M. Lleò, B. Bonato, C. Signoretto and P. Canepari 2003. Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environ. Microbiol. 5(10):986-996.
Bogosian, G., P. J. Morris, and J. P. O'Neil. 1998. A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state. Appl Environ Microbiol. 64(5):1736-42.
Brauns, L. A., M. C. Hudson, J. D. Oliver. 1991. Use of the polymerase chain reaction in detection of culturable and nonculturable Vibrio vulnificus cells. Applied And Environmental Microbiology. 57: 2651-2655.
Bremer, H., and P. D. Dennis. 1996. Modulation of chemical composition and other parameters of the cell by growth rate in Escherichia coli and Salmonella typhimurium. In Cellular and Molecular Biology, ed. by Neidhardt, F. C., J. L. Ingraham, K. B. Low, Magasanik B., M. Schaecter, and H. E. Umbarger. American Society for Microbiology Press, Washington, DC, pp. 1553-1569.
Brockhoff, G., E. Endl, W. Minuth, F. Hofstadter, and R. Knuchel. 1996. Options of flow cytometric three-colour DNA measurements to quantitate EGFR in subpopulations of human bladder cancer. Anal Cell Pathol. 11:55-70.
Brown, T. A. 2002. Genomes2. Department of Biomolecular Sciences, UMIST, Manchester, M60 IQD, UK. 51-53.
Byrd, J. J., H. S. Xu, and R. R. Colwell. 1991. Viable but nonculturable bacteria in drinking water. Appl Environ Microbiol. 57: 875-878.
Camp A. H., and R. Losick. 2008. A Novel Pathway of Intercellular Signaling in Bacillus subtilis Involves a Protein with Similarity to a Component of Type III Secretion Channels. Mol Microbiol.
Cech, T. R. 2000. The ribosome is a ribozyme. Science. 289:878-879.
Chaiyanan, S., S. Chaiyanan, C. Grim, T. Maugel, A. Huq, and R. R. Colwell. 2007. Ultrastructure of coccoid viable but non-culturable Vibrio cholerae. Environmental Microbiology. 9:393-402.
Colwell, R. R. and Spira, W. M. 1992. in Cholera (eds Barua, D. & Greenough, W. B. III) 107-127.
Colwell, R. R. 1996. Global climate and infectious disease: the cholera paradigm. Science. 274:2025-31.
Colwell, R. R. and Grimes. D. J. 2005. Nonculturable microorganisms in the environment. American Society for Microbiology Press, Washington, D.C.
Condon C., Philips J., Fu Z. Y., Squires C., and C. L. Squires. 1992. Comparison of the expression of the seven ribosomal RNA operons in Escherichia coli. EMBO J. 11(11):4175-85.
Coutard, F., M. Pommepuy, S. Loaec, D. Hervio-Heath. 2005. mRNA detection by reverse transcription-PCR for monitoring viability and potential virulence in a pathogenic strain of Vibrio parahaemolyticus in viable but nonculturable state. J Appl Microbiol. 98(4):951-61.
Davies K. M. and P. J. Lewis. 2003. Localization of rRNA Synthesis in Bacillus subtilis: Characterization of Loci Involved in Transcription Focus Formation. J Bacteriol. 185(7): 2346-53.
Dawe, L. L., and R. P. William 1978. “ Bactericidal “ property of seawater : death or debilitation? Appl. Environ. Microbiol. 35:829-833.
Day, A.P., and J. D. Oliver. 2004. Changes in membrane fatty acid composition during entry of Vibrio vulnificus into the viable but nonculturable state. J. Microbiol. 42: 69-73.
de Smit, M.H., and J. van Duin. 2003. Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J. Mol. Biol. 331: 737-743.
Diaper, J. P. and C. Edwards. 1994. Survival of Staphylococcus aureus in lakewater monitored by flow cytometry. Microbiology. 1994. 140(1): 35-42.
Du, M., J. Chen, X. Zhang, A. Li, Y. Li, , Y. Wang. 2007. Retention of virulence in a viable but nonculturable Edwardsiella tarda isolate. Appl Environ Microbiol. 73(4): 1349-54.
Federighi, M., J. L. Tholozan, J. M. Cappelier, J. P. Tissier, and J. L. Jouve. 1998. Evidence of non-coccoid viable but non-culturable Campylobacter jejuni cells in microcosm water by direct viable count, CTC-DAPI double staining, and scanning electron microscopy. Food Microbiol. 15: 539-550.
Francisco, D. E., R. A. Mah, and A. C. Rabin. 1973. Acridine orange epifluorescent technique for counting bacteria in naturall waters. Trans. Am. Microsc. Soc. 92: 416-421.
Frey T. 1995. Nucleic acid dyes for detection of apoptosis in live cells. Cytometry. 21:265-274.
González-Escalona N., A. Fey, M. G. Höfle, R. T. E. and A. G. Carlos. 2006. Quantitative reverse transcription polymerase chain reaction analysis of Vibrio cholera cells entering the viable but non-culturable state and starvation in response to cold shock. Environmental Microbiology 8(4): 658-666.
Grimes, D. J. and R. R. Colwell. 1986. Viavility and virulence of Escherichia coli suspended by membrane chamber in semitropical ocean water. FEMS Microbiology Letters. 34: 161-165.
Heidelberg, J. F., J. A. Eisen, W. C. Nelson, R. A. Clayton, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey, J. D. Peterson, L. Umayam, S. R. Gill, K. E. Nelson, T. D. Read, H. Tettelin, D. Richardson, M. D. Ermolaeva, J. Vamathevan, S. Bass, H. Qin, I. Dragoi, P. Sellers, L. McDonald, T. Utterback, R. D. Fleishmann, W. C. Nierman, O. White, S. L. Salzberg, H. O. Smith, R. R. Colwell, J. J. Mekalanos, J. C. Venter, and C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 406(6795): 469-70.
Hilbert D. W., and P. J. Piggot. 2004. Compartmentalization of Gene Expression during Bacillus subtilis Spore Formation. Microbiol Mol Biol Rev. 68(2):234-62.
Hochman, A. 1997. Programmed cell death in prokaryotes. Critical reviews in microbiology. 23, 207-214.
Hudson, B., W. B. Upholt, J. Devinny, and J. Vinograd. 1969. The use of an ethidium analogue in the dye-buoyant density procedure for the isolation of closed circular DNA: the variation of the superhelix density of mitochondrial DNA. Proc Natl Acad Sci USA. 62: 813-820.
Huq, A., E. B. Small, P. A. West, M. I. Huq, R. Rahman, and R. R. Colwell. 1983. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl. Environ. Microbiol. 45: 275-283.
Hülsmann, A., T. M. Rosche, I. S. Kong, H. M. Hassan, D. M. Beam, and J. D. Oliver. 2003. RpoS-dependent stress response and exoenzyme production in Vibrio vulnificus. Appl Environ Microbiol. 69: 6114-20.
Jacob W. F., M. Santer, and A. E. Dahlberg. 1987. A single base change in the Shine-Dalgarno region of 16S rRNA of Escherichia coli affects translation of many proteins. Proc. Natl. Acad. Sci. U S A. 84(14): 4757-61.
Jensen, K. F. and S. Pedersen. 1990. Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and catalytic components. Microbiol. Rev., 54: 89-100.
Jones, D. M., E. M. Sutcliffe, and A. Curry. 1991. Recovery of viable but non-culturable Campylobacter jejuni. J Gen Microbiol. 137: 2477-2482.
Kaminishi, T., D. N. Wilson, C. Takemoto, J. M. Harms, M. Kawazoe, F.Schluenzen, K. Hanawa-Suetsugu, M. Shirouzu, P. Fucini, and S. Yokoyama1. 2007. A Snapshot of the 30S Ribosomal Subunit CapturingmRNA via the Shine-Dalgarno Interaction. Structure 15: 289-297.
Korgaonkar, K. S., and S. S. Ranade. 1966. Evaluation of acridine orange fluorescence test in viability studies on Escherichia coli. Can J Microbiol. 12(1):185-90.
Kell, D. B., A. S. Kaprelyants, D. H. Weichart, C. R. Harwood, and M. R. Barer. 1998. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Leeuwenhoek. 73: 169-187.
Koga K., A. Ikegami, K. Nakasone, R. Murayama, G. Akanuma, Y. Natori, H. Nanamiya, and F. Kawamura. 2006. Construction of Bacillus subtilis strains carrying the transcriptional bgaB fusion with the promoter region of each rrn operon and their differential transcription during spore development . J. Gen. Appl. Microbiol., 52: 119-124.
Kogure, K., U. Simidu, and N. Taga, 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25: 415-420.
Kondo, K., A. Takade, and K. Amako. 1994. Morphology of the viable but nonculturable Vibrio cholerae as determined by the freeze fixation technique. FEMS Microbiol Lett. 123(1-2):179-84.
Lacey, S. W. 1995. Cholera: calamitous past, ominous future. Clin. Infect. Dis. 20: 1409-1419.
Lewis, P. J., S. D. Thanker, and J. Errington. 2000. Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J., 19, 710-718.
Linder, K., and J. D. Oliver. 1989. Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Appl Environ Microbiol. 55(11): 2837-2842.
Lleò, M. M., B. Bonato, M. C. Tafi., C. Signoreto, M. Boaretti, and P. Canepari. 2001. Resuscitation rate in different enterococcal species in the viable but non-culturable state. J. Appl. Microbiol. 9: 1095-1102.
Lleo, M. M., M. C. Tafi, and P. Canepari. 1998. Nonculturable Enterococcus faecalis cells are metabolically active and capable of resuming active growth. Systematic and applied microbiology. 21(3): 333-9.
Lleò, M. M., S. Pierobon, M. C. Tafi, C. Signoreto, and P. Canepari. 2000. mRNA detection by reverse transcription-PCR for monitoring viability over time in an Enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm. Appl. Environ. Microbiol. 66: 4564-4567.
Lobitz, B., L. Beck, A. Huq, B. Wood, G. Fuchs, A. S. Faruque, and R. R.Colwell (2000). Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc. Natl Acad. Sci. USA. 97, 1438-1443.
Mascher, F., C. Hase, Y. Moenne-Loccoz, and G.. Defago. 2000. The viable-but-nonculturable state induced by abiotic stress in the biocontrol agent Pseudomonas fluorescens CHA0 does not promote strain persistence in soil. Appl Environ Microbiol. 66(4):1662-7.
McDougald, D., S. A. Rice, D. Weichart, and S. Kjelleberg. 1998. Nonculturability: adaptation or debilitation? FEMS Microbiology Ecology. 25: 1-9.
McGovern, V. P. and J. D. Oliver. 1995. Induction of cold responsive proteins in Vibrio vulnificus. J. Bacteriol. 177: 4131-4133.
McKay, A. M. 1992. Viable but non-culturable forms of potentially pathogenic bacteria in water. Letters in Applied Microbiology. 14: 129-135.
Morgan, J. A., K. J. Clarke, G. Rhodes, and R. W. Pickup. 1992. Non-culturable Aeromonas salmonicida in lake water. Microbial Releases. 1(2): 71-78.
Morgan, J. A., K. J. Clarke, G. Rhodes, and R. W. Pickup. 1992. Non-culturable Aeromonas salmonicida in lake water. Microbial Releases. 1: 71-78.
D. Morton, and J. D. Oliver. 1994 . Induction of carbon starvation proteins in Vibrio vulnificus. Appl. Environ. Microbiol. 60, 3653-3659.
Nilsson, L., J. D. Oliver and S. Kjelleberg. 1991. Resuscitation of Vibrio vulnificus from the viable but nonculturable state. J Bacteriol. 173: 5054-5059.
Novitsky, J. A., and R. Y. Morita. 1976. Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol. 32: 617-22.
Nystrom, T. N., and S. Kjelleberg. 1989. Role of protein synthesis in the cell division and starvation-induced resistance to autolysis of a marine Vibrio during the initial phase of starvation. J. Gen. Microbiol. 135:1599-1606.
Oliver, J. D. 1993. Formation of viable but nonculturable cells. In Kjelleberg, S. (ed.), Starvation in Bacteria. Plenum Press, New York, NY. 239–272.
Oliver, J. D.. 2005. The viable but nonculturable state in bacteria. J Microbiol. 43: 93-100.
Oliver, J. D., L. Nilsson, and S. Kjelleberg. 1991. Formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Applied And Environmental Microbiology. 57: 2640-2644.
Oliver, J. D., F. Hite, D. McDougald, N. L. Andon, L. M. Simpson. 1995. Entry into, and resuscitation from, the viable but nonculturable state by Vibrio vulnificus in an estuarine environment. Appl Environ Microbiol. 61(7): 2624-30.
Oliver, J. D., R. Bockian. 1995. In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. Appl Environ Microbiol. 61: 2620-2623.
Peters, J. C. 1885. Early history of Asiatic cholera, in India as known to Europeans A.D. 1503-1800.
Pianetti, A., T. Falcioni, F. Bruscolini, L. Sabatini, E. Sisti, S. Papa. 2005. Determination of the viability of Aeromonas hydrophila in different types of water by flow cytometry, and comparison with classical methods. Appl Environ Microbiol. 71(12): 7948-54.
Porter, K. G., and Y. S. Feig. 1980. The Use of DAPI for Identifying and Counting Aquatic Microflora. Limnology and Oceanography. 25: 943-948.
Pruzzo, C., R. Tarsi, M. M. Lleo, C. Signoretto, M. Zampini, R. R. Colwell, and P. Canepari. 2002. In vitro adhesion to human cells by viable but nonculturable Enterococcus faecalis. Curr Microbiol. 45: 105-10.
Rahman, I., M. Shahamat, P. A. Kirchman, E. Russek-Cohen, R. R. Colwell. 1994. Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl Environ Microbiol. 60(10):3573-8.
Ravel, J., I. T. Knight, C. E. Monahan, R. T. Hill, R. R. Colwell. 1995. Temperature-induced recovery of Vibrio cholerae from the viable but nonculturable state: growth or resuscitation? Microbiology. 141(2): 377-83.
Regine H. A.. 2002. Signal Transduction and Regulatory Mechanisms Involved in Control of the σS (RpoS) Subunit of RNA Polymerase. MICROBIOL. MOL. BIOL. REV. 66(3): 373-395.
Rodriguez, G. G., D. Phipps, K. Ishiguro, H. F. Ridgway. 1992. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol. 58: 1801-1808.
Rollins, D. M. and R. R. Colwell. 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in natural aquatic environment. Applied And Environmental Microbiology. 52: 531-538.
Rosenberg, E., and Y. Ben-Haim. 2002. Microbial diseases of corals and global warming. Environ. Microbiol. 4: 318-326.
Roszak, D. B., D. J. Grimes, and R. R. Colwell. 1984. Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol. 30: 334-8.
Roszak, D. B. and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microbiol Rev. 51: 365-379.
Roth W. G., M. P. Leckie, and D. N. Dietzler. 1988. Restoration of colony-forming activity in osmotically stressed Escherichia coli by betaine. Appl Environ Microbiol. 54(12): 3142-6.
Saux, M. F.-L., D. Hervio-Heath, Loaec, S., R. R. Colwell, and M. Pommepuy. 2002. Detection of cytotoxin-hemolysin mRNA in nonculturable populations of environmental and clinical Vibrio vulnificus strains in artificial seawater. Appl Environ Microbiol. 68(11):5641-6.
Schluenzen, F., A. Tocilji, R. Zarivach, J. Harms, M. Gluehmann, D. Janell, A. Bashan, H. Bartels, I. Agmon, F. Franceschi, and A. Yonath. 2000. Structural of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell. 102: 615-623.
Servis, N. A., S. Nichols, and J. C. Adams. 1995. Development of a direct viable count procedure for some gram-positive bacteria. Lett Appl Microbiol. 20: 237-239.
Signoretto, C., M. M. Lleo, and P. Canepari. 2002. Modification of the peptidoglycan of Escherichia coli in the viable but nonculturable state. Curr Microbiol. 44: 125-131.
Singh, D. V., M. H. Matte, G. R. Matte, S. Jiang, F. Sabeena, B. N. Shukla, S. C. Sanyal, A. Huq, and R. R. Colwell. 2001. Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates. Appl Environ Microbiol. 67: 910-921.
Studer, S.M., and S. Joseph. 2006. Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol. Cell. 22: 105-115.
Tholozan, J. L., J. M. Cappelier, J. P. Tissier, G. Delattre, and M. Federighi. 1999. Physiological characterization of viable but nonculturable Campylobacter jejuni cells. Applied and environmental microbiology. 65: 1110-1116.
Vasudevan P., and K. Venkitanarayanan. 2006. Role of the rpoS gene in the survival of Vibrio parahaemolyticus in artificial seawater and fish homogenate. J Food Prot. 69(6):1438-42.
Williams, J. M., M. Trope, D. J. Caplan, and D. C. Shugars. 2006. Detection and quantitation of E. faecalis by real-time PCR (qPCR), reverse transcription-PCR (RT-PCR), and cultivation during endodontic treatment. J Endod. 32(8):715-21.
Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev.. 51: 221-271.
Wolf, P. W., and J. D. Oliver. 1992. Temperature effects on the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol Ecol. 101: 33-39.
Xu, H. S., N. Roberts, F. L. Singleton, R.W. Attwell, D. J. Grimes, R. R. Colwell. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8: 313-323.
Yang, C., Y. Jiang, K. Huang, C. Zhu, Y. Yin, J. H. Gong, and H. Yu. 2004. A real-time PCR assay for the detection and quantitation of Campylobacter jejuni using SYBR Green I and the LightCycler. Yale J Biol Med. 77(5-6): 125-32.
Yaron, S. and K. Matthews. 2002. A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: investigation of specific target genes. J. Appl. Microbiol. 92: 633-640.
Yildiz, F. H., and G. K. Schoolnik. 1998. Role of rpoS in stress survival and virulence of Vibrio cholerae. Journal of bacteriology. 180: 773-784.
Zimmermann, R., R. Iturriaga, J. Becker-Birck. 1978. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol. 36: 926-935.
Zhu, J., and J. J. Mekalanos. 2003. Quorum sensingdependent biofilms enhance colonization in Vibrio cholerae. Dev Cell. 5: 647-656.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top