[1]王彥翔,2002,”自組特徵映射與學習向量量化神經網路於河川流量之預測”,國立台灣大學生物環境系統工程學系暨研究所,碩士論文。[2]田口玄一,2003,田口統計解析法,台北:五南書局。
[3]朱光華,2005,”應用田口方法評量存開性動脈導管在主動脈造影之最佳調整參數”,中台醫護技術學院放射科學研究所,碩士論文。[4]李健宏,2002,”植基於WGLVQ離線式手寫數字辨識”,國立臺灣師範大學工業教育學系碩士班,碩士論文。[5]李得盛,2002,”應用統計與類神經網路模式於監督式分類問題”,國立交通大學工業工程與管理系,博士論文。[6]周鵬程,2006,類神經網路入門:活用Matlab,台北:全華科技圖書股份有限公司。
[7]林昆達,2005,”小波理論與類神經網路在橋梁非破壞檢測之應用”,中原大學土木工程研究所,碩士論文。[8]林姝彣,2004,”基於本體論之影像自動註解”,國立清華大學資訊系統與應用研究所,碩士論文。
[9]范揚志,2005,”應用類神經網路與基因演算法於射出成形製程參數最佳化之研究”,中華大學科技管理研究所,碩士論文。[10]孫任東,2002,”利用類神經網路於多重輸入多重輸出之製程管制系統”,中原大學工業工程研究所,碩士論文。[11]梁瑞閔,2002,”智慧型程序控制整合於射出成形之分析”,清華大學動力機械工程學系,博士論文。
[12]郭中豐,2005,印花織物電腦自動化分析與辨識智慧型之專家系統開發與研製(國科會專題研究成果報告編號:NSC95-2221-E-011-062),台北:中華民國行政院國家科學委員會。
[13]陳宏祥,2003,”應用於存貨額預測之統計與類神經網路的比較研究”,淡江大學管理科學研究所,碩士論文。[14]粘遙輝,2005,”類神經網路於電力品質干擾波形之辨識”,淡江大學電機工程學系,碩士論文。[15]傅世宇,2005,”模組半徑基底函數類神經網路應用於影像分類問題”,雲林科技大學電子與資訊工程研究所,碩士論文。[16]童淑芬,1990,”類神經網路在心電圖分類之應用”,醫學工程,第十卷,第二期,第59-63頁。
[17]黃俊豪,2000,”大量語者不特定語句環境下語者辨識系統之特徵設計”,國立中山大學大學電機工程研究所,碩士論文。[18]葉怡成,2001,應用類神經網路,台北:儒林圖書公司。
[19]葉怡成,2004,類神經網路模式應用與實作,台北:儒林圖書公司。
[20]潘永浤,2003,”應用田口方法於類神經網路輸入參數設計-零售商快速回應系統模式之建立為例”,義守大學工業工程與管理學系,碩士論文。[21]蔡棋鴻,2002,”塑膠阻隔容器之混煉參數最佳化”,國立台灣科技大學高分子工程系,碩士論文。[22]蔡碧娥,2003,”應用學習向量量化於直接負載控制曲線分類系統之研究”,中原大學電機工程研究所,碩士論文。[23]蔡瓊輝,2003,”使用倒傳遞類神經網路學習垃圾郵件行為的類型”,樹德科技大學資訊管理研究所,碩士論文。[24]鄭燕琴,1994,田口品質工程技衠理論與實務,台北:中華民國品質管制學會。
[25]蘇朝墩,1997,產品穩建設計,台北:中華民國品質學會。
[26]Apolloni, B., Avanzini, G., Cesa-Bianchi, N., & Ronchini, G., 1990, Diagnosis of epilepsy via back-propagation, IJCNN-90-Wash, vol. 2, pp. 571-574.
[27]Baxt, W. G., 1990, Use an artificial neural network for data analysis in clinical decision-making : the diagnosis for acute coronary occlusion, Neural Computation, vol. 2, no. 4, pp. 480-489.
[28]Chinneck, J. W., 2001, Fast heuristics for the maximum feasible subsystem problem, Informs Journal on Computing, vol. 13, no. 3, pp.210-223.
[29]Dawson, C. W., & Wilby, R. L., 2001, Hydrological modelling using artificial neural networks, Progress in Physical Geography, vol. 25, no. 1, pp. 80-108.
[30]Divina, F., & Marchiori, E., 2005, Handling continuous attributes in an evolutionary inductive learner, In IEEE Transactions on Evolutionary Computation, vol. 9, no. 1, pp. 31-43.
[31]Doherty, K. A. J., Adams, R. G., & Davey, N., 2007, Unsupervised learning with normalised data and non-Euclidean norms, Applied Soft Computing Journal, vol. 7, no. 1, pp. 203-210.
[32]Fidelis, M. V., Lopes, H. S., & Freitas, A. A., 2000, Discovering comprehensible classification rules with a geneticalgorithm, Proceedings of IEEE Congress on Evolutionary Computation, vol. 1, pp. 805-810.
[33]Grabczewski, K., & Duch, W., 2002, Heterogeneous forests of decision trees, ICANN.
[34]Guh, R. S., & Shiue, Y. R., 2008, Effective pattern recognition of control charts using a dynamically trained learning vector quantization network, Journal of the Chinese Institute of Industrial Engineers, vol. 25, pp. 73-89.
[35]Harrison, R. F., Marshall, S. J., & Kennedy, R. L., 1991, The early diagnosis of heart attacks : a neurocomputational approach, IJCNN, vol. 9, no. 1, pp. 1-5.
[36]Haykin, S., 1999, Neural networks : a comprehensive foundation, Prentice Hall Internationa.
[37]Hsu, C. W., & Lin, C. J., 2002, A simple decomposition method for support vector machines, Machine Learning, vol. 46, pp. 291-314.
[38]Hsu, J. L., Hsu, C. Y., & Wang, H. C., 2006, Developing an automatic classifier for parkinson's disease diagnosis based on statistical analysis of SPECT data, The Journal of Taiwan Association for Medical Informatics, vol. 15, no. 1, pp. 77–82.
[39]Hu, Q., Yu, D., Xie, Z., & Li, X., 2007, EROS : Ensemble rough subspaces, Pattern Recognition, vol. 40, no. 12, pp. 3728-3739.
[40]Huang, C. C., & Tang, T. T., 2006, Optimizing multiple qualities in as-spun polypropylene yarn by neural networks and genetic algorithms, Journal of Applied Polymer Science, vol. 100, pp. 2532–2541.
[41]Joachims, T., 1998, Text categorization with support vector machines : learning with many relevant features, Proceedings of the European Conference on Machine Learning, pp. 137-142.
[42]Kohnen, T., 1986, Learning vector quantization for pattern recognition, Technical report TKK-F-A601, Helsinki University of Technology, Finland.
[43]Kohonen, T., 1988, Self-organization and associative memory, Springer-Verlag, New York, pp.155-157.
[44]Kohonen, T., 1990, Improved versions of learning vector quantization, IJCNN, vol. 1, pp. 545-550.
[45]Kohonen, T., 1990, The self-organizing map, Proc. IEEE, vol. 78, no. 9, pp. 1464-1480.
[46]Kohonen, T., 1995, Self-organization and associative memory, Berlin : Springer-Verlag.
[47]Kuo, C. F., & Wu, Y. S., 2006, Application of a Taguchi-based neural network prediction design of the film coating process for polymer blends, International Journal of Advanced Manufacturing Technology, vol. 27, pp. 455-461.
[48]Liang, J. M., & Wang, P. J., 2002, Multi-objective optimization scheme for quality control in injection molding, Journal of Injection Molding Technology, vol. 6, no. 4, pp. 331-342.
[49]Liang, J. M., & Wang, P. J., 2002, Self-learning control for injection molding based on neural networks optimization, Journal of Injection Molding Technology, vol. 6, no. 1, pp. 58-71.
[50]Lin, C. H., Huang, E. W., & Jiang, W. W., 2007, Pill Image retrieval using neural networks, The Journal of Taiwan Association for Medical Informatics, vol. 16, no. 2, pp. 29-42.
[51]Mazon, A. J., Zamora, I., Sagastabeitia, K. J., & Valverde, V., 2006, Strategies for fault classification in transmission lines using learning vector quantization neural networks, EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, vol.16, no. 4, pp. 365-378.
[52]Packianather, M. S., & Drake, P. R., 2004, Modelling neural network performance through response surface methodology for classifying wood veneer defects, Proceedings of the I MECH E Part B Journal of Engineering Manufacture, vol. 218, no. 4, pp. 459-466.
[53]Saito, K., & Nakano, R., 1987, Medical diagnostic expert system based on PDP model, ICNN-87, vol. I, pp. 255-262.
[54]Tarang, Y. S., Yang, W. H., & Juang, S. C., 2000, The use of fuzzy logic in the Taguchi method for the optimisation of the submerged arc welding process, International Journal of Advanced manufacturing Technology, vol. 16, pp. 688-94.
[55]Wilson, D. R., & Martinez, T. R., 1997, Improved center point selection for probabilistic neural networks, Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms(ICANNGA), pp. 514-517.
[56]Wu, C. H., & Chen, W. S., 2006, Injection molding and injection compression molding of three-beam grating of DVD pickup lens, Journal Sensors and Actuators A : Physical, vol. 125, no. 2, pp. 367-375.
[57]Yang, M. S., & Yang, J. H., 2002, A fuzzy-soft learning vector quantization for control chart pattern recognition, International Journal of Production Research, vol. 40, no. 12, pp. 2721-2731.
[58]Yoon, Y., Brobst, R. W., Bergstresser, P. R., & Peterson, L., 1990, A connectionist expert system for dermatology diagnosis, Expert System : Planning, pp. 22-31.
[59]Zhou, Z. H., & Jiang, Y., 2004, NeC4.5 : neural ensemble based C4.5, IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 6, pp. 770-773.