跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴寵文
研究生(外文):Tsung-Wen Lai
論文名稱:混沌電路控制設計及通訊保密應用
論文名稱(外文):Control of chaotic system and its application of secure communication
指導教授:顏錦柱
指導教授(外文):Jun-Juh Yan
學位類別:碩士
校院名稱:樹德科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:75
中文關鍵詞:混沌系統動態補償器適應性滑動模式控制
外文關鍵詞:Chaos systemDynamic compensatorAdaptive sliding mode control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:839
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討適應性控制的問題,針對這個問題我們提出兩種控制方法來解決這個問題。當系統狀態在有未知的參數及擾動的情況下能設計出一個簡單的控制器,且只需要利用系統狀態的輸出即能做到混沌同步的控制。所以本篇論文主要分為三個部份。
一、設計出一個動態補償器,且動態補償器只需要給定參數值,且使得控制器只需要取得主-僕系統的兩個輸出狀態回授給控制器即可以達到同步。
二、提出一個適性應滑動模式控制,使得系統在有外部的擾動和不確定的參數時,控制器可以使系統達到同步,再進而利用等效輸出的關係來模擬實際外加訊號來驗證主-僕系統能達到同步。
三、在實作的部分,利用簡單的基本電子元件來實現混沌電路。
In this thesis, the problems of chaos control and synchronization are investigated. Two approaches, including the dynamic compensator and the adaptive sliding mode control are utilized to solve these problems. This paper mainly contains three parts.

1、Dynamic compensator design: In this design method, the Lyapunov stability theory is used to ensure the stability of the considered systems. The master and slave systems are synchronized only with the available output variables. In addition, the SPR limit is released.
2、Adaptive sliding mode control: To cope with the external disturbance and unknown system parameters, sliding mode control method is used to design robust controller to enable the system to achieve synchronization. Simultaneously the results are applied to the communication security.
3、Chaos electric circuit realization: Using some basic electronic components, we complete the realization of some chaotic systems. Also an active nonlinear controller is realized in this part.
中文摘要 --------------------------------------- i
英文摘要 --------------------------------------- ii
誌謝 --------------------------------------- iii
目錄 --------------------------------------- iv
圖目錄 --------------------------------------- v
第一章 緒論----------------------------------- 1
1.1 研究背景------------------------------- 1
1.2 研究動機------------------------------- 1
1.3 論文架構------------------------------- 2
第二章 混沌系統之同步設計:動態補償器之設計方法 3
2.1 簡介----------------------------------- 3
2.2 問題描述------------------------------- 3
2.3 例子模擬------------------------------- 7
2.4 結論----------------------------------- 11
第三章 理論----------------------------------- 15
3.1 簡介----------------------------------- 15
3.2 FitzHugh-Nagumo神經元之動態系統描述---- 16
3.3 問題描述及ASMC之設計------------------ 17
3.4 例子模擬------------------------------- 24
3.5 結論----------------------------------- 25
第四章 實作範例------------------------------- 30
4.1 OPAMP運算放大器---------------------- 30
4.2 Lorezn混沌系統------------------------- 32
4.3 Lü混沌系統----------------------------- 38
4.4 Chua’s混沌系--------------------------- 44
4.5 Sprott混沌系統-------------------------- 50
第五章 結論----------------------------------- 59
參考文獻 --------------------------------------- 60
[1]Yau HT, Chen CK, Chen CL. Sliding mode control of chaotic systems with uncertainties. Int J Bifurc Chaos 2000;10:1139-1147.
[2]Halle KS, Wu CW, Itoh M, Chua LO. Spread spectrum communication through modulation of chaos. Int J of Bifurc Chaos 1993;3:469-477.
[3]Itoh M, Wu CW, Chua LO. Communication systems via chaotic signals from a reconstruction viewpoint. Int J Bifurc Chaos 1997;7:275-286.
[4]Cuomo KM, Oppenheim AV, S. H. Strogatz. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans Circuits Syst II 1993;40:626-633.
[5]Kocarev LJ, Halle KS, Eckert K, Chua LO, Parlitz U. Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurc Chaos 1992;2:709-713.
[6]Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev Lett 1990;64:821-824.
[7]Pecora LM, Carroll TL. Driving systems with chaotic signals. Phys Rev A 1991;44:2374-2383.
[8]Lu Z, Shieh LS, Chen GR. On robust control of uncertain chaotic systems: a sliding-mode synthesis via chaotic optimization. Chaos, Solitons & Fractals 2003;18:819-827.
[9]Hua CC, Guan XP. Adaptive control for chaotic systems. Chaos, Solitons & Fractals 2004;22:55-60.
[10]Yang Y, Ma XK, Zhang H. Synchronization and parameter identification of high-dimensional discrete chaotic systems via parametric adaptive control. Chaos, Solitons & Fractals 2006;28:244-251.
[11]Piccardi C, Ghezzi LL. Optimal control of a chaotic map: fixed point stabilization and attractor confinement. Int J Bifur Chaos 1997;7:437-446.
[12]Yan JJ. H-infinite controlling hyperchaos of the Resler system with input nonlinearity. Chaos, Solitons & Fractals 2004;21:283-293.
[13]Yu XH. Variable structure control approach for controlling chaos. Chaos Solitons & Fractals 1997;8:1577-1586.
[14]Yin X, Ren Y, Shan X. Synchronization of discrete spatiotemporal chaos by using variable structure control. Chaos, Solitons & Fractals 2002;14:1077-1082.
[15]Guo SM, Shieh LS, Chen G, Lin CF. Effective chaotic orbit tracker: a prediction-based digital redesign approach. IEEE Trans Circuits Syst 2000;47:1557-1560.
[16]Wang J, Qiao GD, Deng B. Observer-based robust adaptive variable universe fuzzy control for chaotic system. Chaos, Solitons & Fractals 2005;23:1013-1032.
[17]Brown R, Kocarev L. A unifying definition of synchronization for dynamical systems. Chaos 2000;10:344-349.
[18]Wang C, Ge SS. Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos, Solitons & Fractals 2001;12:1199-1206.
[19]Fotsin H, Bowong S. Adaptive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators. Chaos, Solitons & Fractals 2006;27:822-835.
[20]Kakmeni FMM, Bowong S, Tchawoua C. Nonlinear adaptive synchronization of a class of chaotic systems. Phys Lett A 2006;355:47-54.
[21]Feki M. An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons & Fractals 2003;18:141-148.
[22]Brasch FM, Pearson JB. Pole placement using dynamic compensators. IEEE Trans Automat Contr 1970;15:35-43.
[23]Doyle JC, Glover K, Hhargonekar PP, Francis BA. State-space solutions to standard control problem. IEEE Trans Automat Contr 1989;34:831-846.
[24]Chua LO, Lin GN. Canonical realization of Chua’s circuit family. IEEE Trans Circuits Syst 1990;37:885-902.
[25]Rössler OE. An equation for continuous chaos. Phys Lett 1976;57:397-398.
[26]Shoji FF, Lee HH. On a response characteristics in the Hodgkin–Huxley model and muscle fiber to a periodic stimulation. Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conference of the IEEE, 2000; 2035-2041.
[27]Thompson CJ, Bardos DC, Yang YS, Joyner KH. Nonlinear cable models for cells exposed to electric fields. I. General theory and space-clamped solutions. Chaos, Solutions & Fractals 1999;10:1825-1842.
[28]FitzhHugh R. Thresholds and plateaus in the Hodgkin–Huxley nerve equations. Journal of General Physiology 1960;43:867-896.
[29]Pikovsky AS, Kurths J. Coherence resonance in a noise-driven excitable system. Physical Review Letters 1997;78:775-778.
[30]Makarov VA, Nekorkin VI, Velarde MG. Spiking behavior in a noise-driven system combining oscillatory and excitatory properties. Physical Review Letters 2001; 86:3431-3434.
[31]Lindner B, García-Ojalvo J, Neiman A, Schimansky-Geier L. Effects of noise in excitable systems. Physics Reports 2004;392:321-424.
[32]Shuai JW, Durand DM. Phase synchronization in two coupled chaotic neurons. Physics Letters A 1999; 264:289-297.
[33]Yang T, Chua LO. Secure communication via chaotic parameter modulation. IEEE Transactions on Circuits and Systems I 1996;43:817-819.
[34]Liao TL, Tsai SH. Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons & Fractals 2000; 11:1387-1396.
[35]Chen M, Zhou D, Shang Y. A new observer-based synchronization scheme for private communication. Chaos, Solitons & Fractals 2005;24:1025-1030.
[36]Lo SC, Cho HJ. Chaos and control of discrete dynamic traffic model. Journal of the Franklin Institute 2005;342:839-851.
[37]Sun JT, Zhang YP, Wu QD. Impulsive control for the stabilization and synchronization of Lorenz systems. Physics Letters A 2002; 298:153-160.
[38]Chen SH, Yang Q, Wang CP. Impulsive control and synchronization of unified chaotic system. Chaos, Solitons & Fractals 2004;20:751-758.
[39]Schmitz R. Use of chaotic dynamical systems in cryptography. Journal of the Franklin Institute 2001;338:429-441.
[40]Efimov DV. Dynamical adaptive synchronization. International Journal of Adaptive Control and Signal Processing 2006;20:491-507.
[41]Yu X, Song Y. Chaos synchronization via controlling partial state of chaotic systems. International Journal of Bifurcation and Chaos 2001;11:1737-1741.
[42]Parma GG, Menezes B, Braga AP, M. Costa A. Sliding mode neural network control of an induction motor drive. International Journal of Adaptive Control and Signal Processing 2003;17:501-508.
[43]Lee JY, Yan JJ. Position control of double-side impact oscillator. Mechanical Systems and Signal Processing 2007;21:1076-1083.
[44]Tian YP, Yu X. Stabilizing unstable periodic orbits of chaotic systems via an optimal principle. Journal of the Franklin Institute 2000;337:771-779.
[45]Wu T, Chen MS. Chaos control of the modified Chua’s circuit system. Physica D 2002;164:53-58.
[46]Zhang J, Li C, Zhang H, Yu J. Chaos synchronization using single variable feedback based on backstepping method. Chaos, Solitons & Fractals 2004; 21(5):1183-1193.
[47]Yan JJ, Hung ML, Chiang TY, Yang YS. Robust synchronization of chaotic systems via adaptive sliding mode control. Physics Letters A 2006; 356:220-225.
[48]Yan JJ, Hung ML, Liao TL. Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters. Journal of Sound and Vibration 2006;298:298-306.
[49]Wang J, Deng B, Tsang KM. Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation. Chaos, Solitons & Fractals 2004;22:469-476.
[50]Wang J, Zhang T, Deng B. Synchronization of FitzHugh–Nagumo neurons in external electrical stimulation via nonlinear control. Chaos, Solitons and Fractals 2007;31:30-38.
[51]Itkis U. Control system of variable structure. New York: Wiley: 1976.
[52]Utkin VI. Sliding mode and their applications in variable structure systems. Mir Editors, Moscow; 1978.
[53]Popov VM. Hyperstability of control system. Berlin: Springer-Verlag; 1973.
[54]Edwards C, Spurgeon SK, Patton RJ. Sliding mode observers for fault detection and isolation. Automatica 2000; 36:541-553.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top