|
[1]Yau HT, Chen CK, Chen CL. Sliding mode control of chaotic systems with uncertainties. Int J Bifurc Chaos 2000;10:1139-1147. [2]Halle KS, Wu CW, Itoh M, Chua LO. Spread spectrum communication through modulation of chaos. Int J of Bifurc Chaos 1993;3:469-477. [3]Itoh M, Wu CW, Chua LO. Communication systems via chaotic signals from a reconstruction viewpoint. Int J Bifurc Chaos 1997;7:275-286. [4]Cuomo KM, Oppenheim AV, S. H. Strogatz. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Trans Circuits Syst II 1993;40:626-633. [5]Kocarev LJ, Halle KS, Eckert K, Chua LO, Parlitz U. Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurc Chaos 1992;2:709-713. [6]Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev Lett 1990;64:821-824. [7]Pecora LM, Carroll TL. Driving systems with chaotic signals. Phys Rev A 1991;44:2374-2383. [8]Lu Z, Shieh LS, Chen GR. On robust control of uncertain chaotic systems: a sliding-mode synthesis via chaotic optimization. Chaos, Solitons & Fractals 2003;18:819-827. [9]Hua CC, Guan XP. Adaptive control for chaotic systems. Chaos, Solitons & Fractals 2004;22:55-60. [10]Yang Y, Ma XK, Zhang H. Synchronization and parameter identification of high-dimensional discrete chaotic systems via parametric adaptive control. Chaos, Solitons & Fractals 2006;28:244-251. [11]Piccardi C, Ghezzi LL. Optimal control of a chaotic map: fixed point stabilization and attractor confinement. Int J Bifur Chaos 1997;7:437-446. [12]Yan JJ. H-infinite controlling hyperchaos of the Resler system with input nonlinearity. Chaos, Solitons & Fractals 2004;21:283-293. [13]Yu XH. Variable structure control approach for controlling chaos. Chaos Solitons & Fractals 1997;8:1577-1586. [14]Yin X, Ren Y, Shan X. Synchronization of discrete spatiotemporal chaos by using variable structure control. Chaos, Solitons & Fractals 2002;14:1077-1082. [15]Guo SM, Shieh LS, Chen G, Lin CF. Effective chaotic orbit tracker: a prediction-based digital redesign approach. IEEE Trans Circuits Syst 2000;47:1557-1560. [16]Wang J, Qiao GD, Deng B. Observer-based robust adaptive variable universe fuzzy control for chaotic system. Chaos, Solitons & Fractals 2005;23:1013-1032. [17]Brown R, Kocarev L. A unifying definition of synchronization for dynamical systems. Chaos 2000;10:344-349. [18]Wang C, Ge SS. Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos, Solitons & Fractals 2001;12:1199-1206. [19]Fotsin H, Bowong S. Adaptive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators. Chaos, Solitons & Fractals 2006;27:822-835. [20]Kakmeni FMM, Bowong S, Tchawoua C. Nonlinear adaptive synchronization of a class of chaotic systems. Phys Lett A 2006;355:47-54. [21]Feki M. An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons & Fractals 2003;18:141-148. [22]Brasch FM, Pearson JB. Pole placement using dynamic compensators. IEEE Trans Automat Contr 1970;15:35-43. [23]Doyle JC, Glover K, Hhargonekar PP, Francis BA. State-space solutions to standard control problem. IEEE Trans Automat Contr 1989;34:831-846. [24]Chua LO, Lin GN. Canonical realization of Chua’s circuit family. IEEE Trans Circuits Syst 1990;37:885-902. [25]Rössler OE. An equation for continuous chaos. Phys Lett 1976;57:397-398. [26]Shoji FF, Lee HH. On a response characteristics in the Hodgkin–Huxley model and muscle fiber to a periodic stimulation. Industrial Electronics Society, 2000. IECON 2000. 26th Annual Conference of the IEEE, 2000; 2035-2041. [27]Thompson CJ, Bardos DC, Yang YS, Joyner KH. Nonlinear cable models for cells exposed to electric fields. I. General theory and space-clamped solutions. Chaos, Solutions & Fractals 1999;10:1825-1842. [28]FitzhHugh R. Thresholds and plateaus in the Hodgkin–Huxley nerve equations. Journal of General Physiology 1960;43:867-896. [29]Pikovsky AS, Kurths J. Coherence resonance in a noise-driven excitable system. Physical Review Letters 1997;78:775-778. [30]Makarov VA, Nekorkin VI, Velarde MG. Spiking behavior in a noise-driven system combining oscillatory and excitatory properties. Physical Review Letters 2001; 86:3431-3434. [31]Lindner B, García-Ojalvo J, Neiman A, Schimansky-Geier L. Effects of noise in excitable systems. Physics Reports 2004;392:321-424. [32]Shuai JW, Durand DM. Phase synchronization in two coupled chaotic neurons. Physics Letters A 1999; 264:289-297. [33]Yang T, Chua LO. Secure communication via chaotic parameter modulation. IEEE Transactions on Circuits and Systems I 1996;43:817-819. [34]Liao TL, Tsai SH. Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons & Fractals 2000; 11:1387-1396. [35]Chen M, Zhou D, Shang Y. A new observer-based synchronization scheme for private communication. Chaos, Solitons & Fractals 2005;24:1025-1030. [36]Lo SC, Cho HJ. Chaos and control of discrete dynamic traffic model. Journal of the Franklin Institute 2005;342:839-851. [37]Sun JT, Zhang YP, Wu QD. Impulsive control for the stabilization and synchronization of Lorenz systems. Physics Letters A 2002; 298:153-160. [38]Chen SH, Yang Q, Wang CP. Impulsive control and synchronization of unified chaotic system. Chaos, Solitons & Fractals 2004;20:751-758. [39]Schmitz R. Use of chaotic dynamical systems in cryptography. Journal of the Franklin Institute 2001;338:429-441. [40]Efimov DV. Dynamical adaptive synchronization. International Journal of Adaptive Control and Signal Processing 2006;20:491-507. [41]Yu X, Song Y. Chaos synchronization via controlling partial state of chaotic systems. International Journal of Bifurcation and Chaos 2001;11:1737-1741. [42]Parma GG, Menezes B, Braga AP, M. Costa A. Sliding mode neural network control of an induction motor drive. International Journal of Adaptive Control and Signal Processing 2003;17:501-508. [43]Lee JY, Yan JJ. Position control of double-side impact oscillator. Mechanical Systems and Signal Processing 2007;21:1076-1083. [44]Tian YP, Yu X. Stabilizing unstable periodic orbits of chaotic systems via an optimal principle. Journal of the Franklin Institute 2000;337:771-779. [45]Wu T, Chen MS. Chaos control of the modified Chua’s circuit system. Physica D 2002;164:53-58. [46]Zhang J, Li C, Zhang H, Yu J. Chaos synchronization using single variable feedback based on backstepping method. Chaos, Solitons & Fractals 2004; 21(5):1183-1193. [47]Yan JJ, Hung ML, Chiang TY, Yang YS. Robust synchronization of chaotic systems via adaptive sliding mode control. Physics Letters A 2006; 356:220-225. [48]Yan JJ, Hung ML, Liao TL. Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters. Journal of Sound and Vibration 2006;298:298-306. [49]Wang J, Deng B, Tsang KM. Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation. Chaos, Solitons & Fractals 2004;22:469-476. [50]Wang J, Zhang T, Deng B. Synchronization of FitzHugh–Nagumo neurons in external electrical stimulation via nonlinear control. Chaos, Solitons and Fractals 2007;31:30-38. [51]Itkis U. Control system of variable structure. New York: Wiley: 1976. [52]Utkin VI. Sliding mode and their applications in variable structure systems. Mir Editors, Moscow; 1978. [53]Popov VM. Hyperstability of control system. Berlin: Springer-Verlag; 1973. [54]Edwards C, Spurgeon SK, Patton RJ. Sliding mode observers for fault detection and isolation. Automatica 2000; 36:541-553.
|