(3.235.11.178) 您好!臺灣時間:2021/02/26 03:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝孟吟
研究生(外文):Meng-Yin Hsieh
論文名稱:以界面聚合法製備不同型態之本質型導電高分子
論文名稱(外文):Preparation of different Morphology of Intrinsically Conductive Polymer by Interfacial Polymerization Technique
指導教授:陳澄河陳澄河引用關係
指導教授(外文):CHENG-HO CHEN
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:84
中文關鍵詞:聚苯胺聚(苯胺-co-吡咯)化學氧化合成法界面聚合十二烷基苯磺酸纖維狀高分子合成法本質型聚苯胺
外文關鍵詞:polyanilinepoly(aniline-co-pyrrole)chemical oxidization methodInterfacial polymerizationdodecylbenzene sulfonic acid
相關次數:
  • 被引用被引用:3
  • 點閱點閱:256
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分成兩部份
第一部份:
採用化學氧化合成法,以界面聚合方式,利用水與有機溶劑(氯仿)所形成之不相容界面,以十二烷基苯磺酸(DBSA)摻雜製備導電性聚苯胺,摻雜DBSA不但可以改善聚苯胺難溶特性更可兼顧導電度需求。實驗結果顯示,在不同AN與DBSA莫耳比所合成之導電性聚苯胺之導電度介於0.1~0.25 S/cm之間。由TEM結果顯示,在AN/DBSA= 1:0.125~1:0.5之產物為纖維和顆粒狀;在AN/DBSA= 1:1~1:3之產物為棒狀和顆粒狀。由溶解率測試可知,以DBSA摻雜之聚苯胺可部份溶於一般常用有機溶劑中,且在氯仿中溶解率為63%。
第二部份:
採用化學氧化合成法,以界面聚合方式,利用水與有機溶劑(氯仿)所形成不相容界面,以鹽酸(HCl)摻雜製備出聚(苯胺-co-吡咯)。實驗結果顯示,聚(苯胺-co-吡咯)之導電度最佳為AnPy 9-1(An/Py莫耳比為9:1)。由TEM分析結果可知,在AnPy 9-1~5-5之產物為纖維狀;在AnPy 3-7~1-9之產物型態傾向於顆粒狀。
This study contains two parts.
First part:
The chemical oxidization method is used to prepare the conductive polyaniline (PANI) doped with dodecylbenzene sulfonic acid (DBSA) by interfacial polymerization which an immiscible interface is formed by water and organic solvent (chloroform). The experimental results indicate that the conductivity of PANI is ranged from 0.1 to 0.25 S/cm when the molar ratio of AN/DBSA are various. The images of transmission electron microscopy (TEM) show that the morphology of PANI looks like dendritic fiber and particles when the molar ratios of AN/DBSA are form 1:0.125 to 1:0.5. However, the morphology of the PANI looks like rods and particles when the molar ratios of AN/DBSA are from 1:1 to 1:3. The PANI doped by DBSA can be dissolved in chloroform.
Second part:
The chemical oxidization method is used to prepare conductive poly(aniline-co-pyrrole) doped with hydrochloric acid (HCl) by interfacial polymerization which employ an immiscible interface formed by water and organic solvent (chloroform). The experimental results indicate that the conductivity of poly(aniline-co-pyrrole) is the best when the molar ratio of An/Py is 9:1 (AnPy 9-1). The images of TEM demonstrate that the structure of poly(aniline-co-pyrrole) is like dendritic fiber when the molar ratios An/Py of are from 9:1 to 5:5. On the other hand, the copolymers look like particles when the molar ratios of An/Py are from 3:7 to 1:9.
目錄
摘要----------------------------------------------------------------------------------Ι
Abstract---------------------------------------------------------------------------Ⅱ
誌謝--------------------------------------------------------------------------------Ⅳ
目錄--------------------------------------------------------------------------------Ⅴ
表目錄-----------------------------------------------------------------------------Ⅷ
圖目錄-----------------------------------------------------------------------------Ⅸ
Scheme目錄--------------------------------------------------------------------XⅡ

第一章 緒論---------------------------------------------------------------------1
1-1前言------------------------------------------------------------------------1
1-2 導電性高分子簡介-----------------------------------------------------2
1-2-1 導電高分子源起及發展---------------------------------------2
1-2-2 導電高分子的導電機制---------------------------------------4
1-3 聚苯胺--------------------------------------------------------------------7
1-3-1 聚苯胺簡介------------------------------------------------------7
1-3-2 聚苯胺之紅外光光譜----------------------------------------10
1-3-3 聚苯胺之紫外可見光譜-------------------------------------10
1-3-4 聚苯胺之合成和聚合機構----------------------------------11
1-4 聚吡咯簡介-------------------------------------------------------------14
1-5 導電高分子之應用----------------------------------------------------16
1-6 界面活性劑-------------------------------------------------------------18
1-6-1 界面活性劑簡介----------------------------------------------18
1-6-2 微胞的形成----------------------------------------------------18
1-7 界面聚合簡介----------------------------------------------------------20
1-8 導電高分子之相關文獻----------------------------------------------21
1-9 研究動機與目的-------------------------------------------------------26
第二章 聚合條件對苯胺與十二烷基苯磺酸合成導電性聚苯胺型態之
影響---------------------------------------------------------------------28
2-1 研究架構----------------------------------------------------------------28
2-2 實驗藥品----------------------------------------------------------------29
2-3 儀器設備----------------------------------------------------------------31
2-4 實驗步驟----------------------------------------------------------------33
2-4-1導電性聚苯胺之合成-----------------------------------------33
2-5 性質測試與分析------------------------------------------------------34
2-6 結果與討論-------------------------------------------------------------36
2-6-1 界面聚合說明-------------------------------------------------36
2-6-2 反應系統之外觀變化----------------------------------------38
2-6-3 四點探針導電度之分析-------------------------------------40
2-6-4 傅立葉轉換紅外線光譜之分析----------------------------41
2-6-5 紫外線吸收光譜之分析-------------------------------------42
2-6-6 穿透式電子顯微鏡之分析----------------------------------44
2-6-7 高解析場發射掃描式電子顯微鏡分析-------------------49
2-6-8 溶解率分析----------------------------------------------------52
2-7 結論----------------------------------------------------------------------53
第三章 聚合條件對苯胺與吡咯製備聚(苯胺-co-吡咯)型態之影響
---------------------------------------------------------------------------54
3-1 研究架構---------------------------------------------------------------54
3-2 實驗藥品----------------------------------------------------------------55
3-3 儀器設備----------------------------------------------------------------57
3-4 實驗步驟----------------------------------------------------------------59
3-4-1 聚(苯胺-co-吡咯)之合成(poly(aniline-co-pyrrole))-----59
3-5 性質測試與分析-------------------------------------------------------60
3-6 結果與討論-------------------------------------------------------------62
3-6-1 界面聚合說明-------------------------------------------------62
3-6-2 反應系統之外觀變化----------------------------------------64
3-6-3 四點探針導電度之分析-------------------------------------66
3-6-4 傅立葉轉換紅外線光譜之分析----------------------------67
3-6-4-1 poly(aniline-co-pyrrole)鑑定與分析---------------------67
3-6-5 超導核磁共振之分析----------------------------------------69
3-6-6 穿透式電子顯微鏡之分析----------------------------------71
3-6-7 高解析場發射掃描式電子顯微鏡分析-------------------74
3-7 結論----------------------------------------------------------------77
第四章 總結---------------------------------------------------------------------78
參考文獻--------------------------------------------------------------------------79

表目錄
Table1-1常見的本質型導電性高分子之導電度及結構------------------3
Table1-2 鹼式中間氧化態聚苯胺的紅外光吸收光譜-------------------10
Table2-1聚合溫度為50℃,不同AN與DBSA莫耳比下導電性聚苯
胺之導電度對照表--------------------------------------------------40
Table2-2 聚合溫度為50℃,不同AN與DBSA莫耳比下導電性聚苯
胺之TEM圖對照表-----------------------------------------------45
Table3-1 不同An與Py莫耳比所製備的poly(aniline-co-pyrrole)之導
電度對照表---------------------------------------------------------66
Table3-2 不同An與Py莫耳比所製備的poly(aniline-co-pyrrole)之
TEM圖對照表-----------------------------------------------------71

圖目錄
Figure1-1 各種物質及導電高分子導電率之分佈情形--------------------4
Figure1-2 絕緣體、半導體、導體的能隙示意圖--------------------------6
Figure1-3 極子與雙極子之能階圖--------------------------------------------6
Figure1-4 四種不同型聚苯胺之紫外可見光光譜圖---------------------11
Figure1-5 微胞結構(a)球形結構、(b)雙層球形結構、(c)及(d)為柱狀
和層狀結構---------------------------------------------------------19
Figure1-6 Snapshot of interfacial polymerization of aniline. The top layer
is an aqueous solution of poly(styrene sulfonic acid) and
ammonium peroxydisulfate,while the bottom layer contains
dissolved aniline in CCl4.------------------------------------------21
Figure1-7 Scanning electron microscope (SEM) images of 40% (wt/wt)
polyaniline/poly(sulfonated styrene)(PANI/PSS) nanofiber
composite synthesized by interfacial synthesis route: (a)
cracked film, (b) view inside a crack, exposing the bulk of
the composite film to show (c) and (d) PANI nanofibers
(light color)seen in the wall of nanocomposite (50 nm in
diameter) surrounded by the insulating, low emissive (dark
color) host PSS.-----------------------------------------------------22
Figure1-8 Schematic presentation of the formation mechanism for SPANI
nanofibers synthesized by a self-assembly process.-----------23
Figure1-9 SEM images of SPANI nanofibers with AN/SAN mole ratio of
1.----------------------------------------------------------------------23
Figure1-10 Scanning electron microscopy image of the PPy/SDS
sample.-------------------------------------------------------------24
Figure1-11 Scanning electron microscopy image of the PPy/DTAB
sample.-------------------------------------------------------------24
Figure1-12 (A-D) TEM images of micromats of PANI nanofibers
synthesized in aqueous solution. The inset in part A shows
the SEM image of PANI micromats. Synthetic conditions:
[aniline]= 16 mM;[APS] /[aniline] = 1.0:1; 25 °C.----------25
Figure1-13 TEM image of products synthesized at different reaction
times(synthetic conditions:[aniline] =16 mM; [APS]/[aniline]
=1.0:1;25 °C).-----------------------------------------------------25
Figure2-1 平面的界面聚合示意圖------------------------------------------37
Figure2-2 AN/DBSA= 1:1之反應物照片,(a)含苯胺單體與DBSA的
氯仿溶液(b)APS水溶液-------------------------------------------38
Figure2-3 AN/DBSA= 1:1所聚合聚苯胺之合成過程照片-------------39
Figure2-4 聚合溫度為50℃,不同AN與DBSA莫耳比下導電性聚苯
胺之FTIR光譜圖--------------------------------------------------41
Figure2-5 聚合溫度50℃,不同AN與DBSA莫耳比下導電性聚苯胺
之UV-Vis光譜圖--------------------------------------------------43
Figure2-6 聚合溫度為50℃,不同AN與DBSA莫耳比導電性聚苯胺
之TEM圖---------------------------------------------------------46
Figure2-7 AN/DBSA= 1:0.125~1:0.5立體的界面聚合示意圖-------47
Figure2-8 AN/ DBSA= 1:1~1:3立體的界面聚合示意圖--------------48
Figure2-9 聚合溫度為50℃,導電性聚苯胺之FE-SEM圖(a) AN/DBSA
= 1:0.5(×10K)、(b) AN/DBSA= 1:0.5(×30K)、(c) AN/DBSA=
1:3(×10K)、(d) AN/DBSA=1:3(×30K)---------------------51
Figure3-1平面的界面聚合示意圖-------------------------------------------63
Figure3-2 AnPy 9-1之反應物照片,(a)含苯胺單體與吡咯單體的氯仿
溶液(b)鹽酸水溶液(c)APS水溶液-------------------------------64
Figure3-3 AnPy 9-1所聚合poly(aniline-co-pyrrole)之合成過程照片--65
Figure3-4 不同An與Py莫耳比所製備的poly(aniline-co-pyrrole)之
FTIR光譜圖--------------------------------------------------------68
Figure3-5 AnPy 9-1所聚合poly(aniline-co-pyrrole)之NMR光譜圖--70
Figure3-6 不同AN與Py莫耳比所製備poly(aniline-co-pyrrole)之TEM
圖---------------------------------------------------------------------72
Figure3-7 不同AN與Py莫耳比所製備poly(aniline-co-pyrrole)之TEM
圖---------------------------------------------------------------------73
Figure3-8 不同An與Py莫耳比所製備的poly(aniline-co-pyrrole)之
HR FE-SEM(×10K)------------------------------------------------75
Figure3-9 不同An與Py莫耳比所製備的poly(aniline-co-pyrrole)之
HR FE-SEM(×30K)------------------------------------------------76

Scheme目錄
Scheme1-1 聚苯胺之各種氧化型態(a)leucoemeraldine、(b)emeraldine base、(c)emeraldine salt、(d)pernigraniline ------------------9
Scheme1-2 聚苯胺的結構------------------------------------------------------7
Scheme1-3 四種聚苯胺之理想結構圖---------------------------------------9
Scheme1-4 聚苯胺的聚合機構圖--------------------------------------------13
Scheme1-5 聚吡咯的結構-----------------------------------------------------14
Scheme2-1 研究架構圖--------------------------------------------------------28
Scheme2-2 以十二烷基苯磺酸摻雜製備導電性聚苯胺之反應步驟-----------------------------------------------------------------------33
Sheme3-1 研究架構圖---------------------------------------------------------54
1.王宗雄,“導電高分子聚苯胺之簡介及其應用”,工業材料雜誌,第175期,165-175(2000).

2.Dallas, P., Niarchos, D., Vrbanic, D., Boukos, N., Pejovnik, S., Trapalis, C., and Petridis, D., “Interfacial polymerization of pyrrole and in situ synthesis of polypyrrole/silver nanocomposites”, Polymer, 48, 2007-2013(2007).

3.Hopkins, A. R., Sawall, D. D., Villahermosa, R. M., and Lipeles, R. A., “Interfacial synthesis of electrically conducting polyaniline nanofiber composites”, Thin Solid Films, 469–470, 304–308(2004).

4.Kim, B. J., Oh, S. G., Han, M. G., and Im S. S., “Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions”, Synthetic Metals, 122, 297–304(2001).

5.Zhang, Z., Wei, Z., Zhang, L., and Wan, M., “Polyaniline nanotubes
and their dendrites doped with different naphthalene sulfonic acids”, Acta Materialia, 53, 1373–1379(2005).

6.劉新明、崔元臣,“界面聚合及其應用進展”,化學研究,第17卷第1期, 101-104(2006).

7.Shirakawa, H., Lousi, E. J., MacDiarmid, A. G., Chiang, C. K., and Heeger, A.J., “Synthesis of Electrically Conducting Organic Polymers:Halogen Derivatives of Polyacetylene, (CH)x”, Journal of the Chemical Society, Chemical Communications, 16, 578-580(1977).

8.Wessling, B., “Dispersion hypothesis and non-equilibrium Thermodynamics: key elements for a materials science of conductive polymers.A key to understanding polymer blends or other multiphase polymer systems”, Synthetic Metals, 4, 119-149(1991).

9.Hourquebie, P., and Olmedo, L., “Influence of structural parameters of conducting polymers on their microwave properties”, Synthetic Metals, 65, 19-26(1994).

10.Harsanyi, G., “Sensing Effects in Electroconducting Conjugated Polymers”, Polymer Films in Sensor Applications, Chapter 3, 209(1995).

11.Cao, Y., Smith, P., and Hegger, A. J., “Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers”, Synthetic Metals, 48, 91-97(1992).

12.Green, A. G., and Woodhead, A. E., “CCXLIII.—Aniline-black and allied compounds. Part I”, Journal of the Chemical Society, Transactions, 97, 2388-2403(1910).

13.Mohilner, D. M., and Adams, R. N., and Argersinger, W. J., “Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode”, Journal of the American Chemical Society, 84, 3618-3622(1962).

14.MacDiarmid, A. G., Chiang, J. C., Halpern, M., Huang, W. S., Mu, S. L., Nanaxakkara, L. D., Wu, S. W., and Yaniger S.I., “Polyaniline: Interconversion of Metallic and Insulating Forms”, Molecular Crystals and Liquid Crystals, 121, 173-180(1985).

15.Tang, J., Jing, X., Wang, B., and Wang, F., “Infrared spectra of soluble polyaniline”, Synthetic Metals, 24, 231-238(1988).

16.Monkman, A. P., and Adams, P., “Structural characterisation of polyaniline free standing films”, Synthetic Metals, 41, 891-896(1991).

17.Inoue, M., Navarro, R. E., and Inoue, M. B., “New Soluble Polyaniline: Synthesis, Electrical Properties and Solution Electronic Spectrum”, Synthetic Metals, 30, 199-207(1989).

18.Matsubayashi, G. E., Doi, T., and Tanaka, T., “Formation of Polyaniline Via Bis(Anilinium) Persulfate and Its Electrical and Spectroscopic Properties”, Synthetic Metals, 33, 99-106(1989).

19.Focke, W. W., Wnek, G. E., and Wei, Y., “Influence of oxidation state, pH, and counter ion on the conductivity of polyaniline”, Journal of Physical Chemistry, 91, 5813-5818(1987).

20.Yin, W., and Ruckenstein, E., “Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid”, Synthetic Metals, 108, 39-46(2000).

21.吳知行 、楊乾信,“苯胺的電化學聚合”,化工,第44卷第2期(1997).

22.Oh, K. W., Park, H. J., and Kim, S. H., “Electrical Property and Stability of Electrochemically Synthesized Polypyrrole Films”, Journal of Applied Polymer Science, 91, 3659-3666(2004).

23.Funt, B. L., and Lowen, S. V., “Mechanistic studies of the electropolymerization of 2,2′-bithiophene and of pyrrole to form conducting polymers”, Synthetic Metals, 11, 129-137(1985).

24.Ohtani, A., Abe, M., Ezoe, M., Doi, T., Miyata T., and Miyake, A., “Synthesis and Properties of High-Molecular-Weight Soluble Polyaniline and Its Application to the 4MB-Capacity Barium Ferrite Floppy Disk's Antistatic Coating”, Synthetic Metals, 55, 3696-3701(1993).

25.趙承琛,“界面科學基礎(原名:界面化學) ”,復文書局(1984).

26.曹恒光、連大成,“淺談微乳液”,物理雙月刊,第23卷第4期(2001).

27.Morgan, P. W., and Kwolek, S. L., “Interfacial Polycondensation. II. Fundamentals of Polymer Formation at Liquid Interfaces”, Journal of Polymer Science Part A:Polymer Chemistry, 34, 531-559(1959).

28.Stejskal, J., Trchova, M., Ananieva, I. A., Janca, J., Prokes, J., Fedorova, S., and Sapurina, I., “Poly(aniline-co-pyrrole): powders, films, and colloids.Thermophoretic mobility of colloidal particles”, Synthetic Metals, 146, 29–36(2004).

29.Yang, C. H., Chih, Y. K., Cheng, H. E., and Chen, C. H., “Nanofibers of self-doped polyaniline ”, Polymer, 46,10688–10698(2005).

30.Zhou, C., Han, J., Song, G., and Guo R., “Polyaniline Hierarchical Structures Synthesized in Aqueous Solution:Micromats of Nanofibers”, Macromolecules, 40, 7075-7078(2007).

31.匡汀、廖力夫、劉傳湘,“聚苯胺溶解性研究”,應用化工,第35卷第6期, 445-447(2006).

32.王淑君,“以硝酸與十二烷基苯磺酸共摻雜製備導電性聚苯胺奈米顆粒之研究”,南台科技大學化學工程與材料工程研究所碩士論文(2006).

33.Han, D., Chu, Y., Yang, L., Liu, Y., and Lv, Z., “Reversed micelle polymerization: a new route for the synthesis of DBSA–polyaniline nanoparticles”, Colloids and Surfaces A:Physicochem.Eng.Aspects, 259, 179–187(2005).

34.Moulton, S. E., Innis, P. C., Ngamna, O., and Wallace, G.G., “Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions”, Current Applied Physics, 4, 402–406(2004).

35.歐明坤,“以界面聚合法製備奈米結構之導電性聚苯胺及其應用”,南台科技大學化學工程與材料工程研究所碩士論文(2006).

36.范克雷維倫,“聚合物的性質、性質的估算及其與化學結構的關係”,科學出版社,165~175頁(1981).

37.Cakmak, G., Kucukyavuz, Z., and Kucukyavuz, S.,“Conductive copolymers of polyaniline, polypyrrole and poly(dimethylsiloxane)”, Synthetic Metals, 151, 10–18(2005).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔