[1] Abu Bakar MS, Cheang P, Khor KA. Mechanical properties of injection molded hydroxyapatite–polyetheretherketone biocomposites. Compos Sci Technol 2003;63:421–5.
[2] Abu Bakar MS, Cheng MHW, Tang SM, Yu SC, Liao K, Tan CT, Khor KA, Cheang P. Tensile properties, tension–tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 2003;24:2245–50.
[3] Binnaz Yoruc Hazar, A. Preparation and in vitro bioactivity of CaSiO3 powders. Ceramics International 33 (2007) 687–692
[4] Baksh D, Davies JE, Kim S. Three-dimensional matrices of calcium polyphosphates support bone growth in vitro and in vivo. J Mater Sci: Mater Med 1998;9:743–8.
[5] Barton AJ, Sagers RD, Pitt WG. Bacterial adhesion to orthopaedic implant polymers. J Biomed Mater Res 1996;30: 403–10.
[6] Barton AJ, Sagers RD, Pitt WG. Bacterial adhesion to orthopaedic implant polymers. J Biomed Mater Res 1996;30: 403–10.
[7] Bergeret Aand N. Alberola , A study of the interphase in styrene-methacrylic acid copolymer/glass bead composites . Polymer 1996;37:2759-2765.
[8] Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996;17:137–46.
[9] Chengtie Wu, Jiang Chang, Junying Wang, Siyu Ni, Wanyin Zhai, Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials 26,June (2005),Pages 2925-2931.
[10] Evans SL, Gregson PJ. Composite technology in load-bearing orthopedic implants. Biomaterials 1998;9:1329–42.
[11] Freed L, Marquis JC, Nohria A, Emmanual J, Mikos AG. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993;27:11–23.
[12] Fujiharaa K, Huanga ZM, Ramakrishnaa S, Satknananthamc K, Hamadad. HPerformance study of braided carbon/PEEK composite compression bone plates. Biomaterials 2003;24:2661-67.
[13] Fujiharaa K, Huanga ZM, Ramakrishnaa S, Satknananthamc K, Hamadad H. Feasibility of knitted carbon/PEEKcomposites for orthopedic bone plates. Biomaterilas 2004;25:3877-85.
[14] Gomi K, Lowenberg B, Shapiro G, Davies JE. Resorption of sintered synthetic hydroxyapatite by osteoclasts in vitro. Biomaterials 1993;14:91–96.
[15] Habal MB. Bone–ceramic composite for enhancement of bone graft regeneration. J Craniofac Surg 1991;2:27–32.
[16] Holmes R, Mooney V, Bucholz R, Tencer A. A coralline hydroxyapatite bone graft substitute. Preliminary report. Clin Orthop 1984:252–262.
[17] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21:2529–43.
[18] Hirotaka Maeda, Toshihiro Kasuga, Masayuki Nogami, Minoru Ueda, Preparation of bonelike apatite composite for tissue engineering scaffold. Science and Technology of Advanced Materials 6 (2005) 48–53.
[19] Sopyan I. , M. Mel, S. Rameshc, K.A. Khalid. Porous hydroxyapatite for artificial bone applications. Science and Technology of Advanced Materials 8 (2007) 116–123.
[20] Jarcho M, Kay JF, Gumaer KI, Doremus RH, Drobeck HP. Tissue, cellular and subcellular events at a bone–ceramic hydroxylapatite interface. J Bioeng 1977;1:79 –92.
[21] Jockisch KA, Brown SA, Bauer TW, Merrit K. Biological response to chopped carbon-fibre reinforced PEEK. J Biomed Mater Res 1992;26:133–46.
[22] Katzera A, Marquardtb H, Westendorf J, Weningc JV, von Foerstera G.
Polyetheretherketone Fcytotoxicity and mutagenicity in vitro Biomaterials 2002;23 :1749-59.
[23] Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J, Mukai K, Griffith LG, Vacanti JP. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymeric scaffold with an intrinsic network of channels Ann Surg 1998;228:8–13.
[24] Kokubo T, Kushitani H, Kitsugi S, Yammamuro T. Solutions able to reproduce in vivo surface structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 1990;24:721–34.
[25] Liang JZ , The melt elastic behavior of polypropylene/glass bead composites in capillary flow .Polymer Testing 2002;21:927-931.
[26] Liang JZ and R. K. Y. Li , Brittle–ductile transition in polypropylene filled with glass beads . Polymer 1999;40:3191-3195.
[27] Lin HR, Kuo CJ, Yang CY, Shaw SY, Wu YJ. Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives. J Biomed Mater Res 2002;63:271–279.
[28] Lin HR, Yeh YJ. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res Part B: Appl Biomater 2004;71B:52-65.
[29] Luklinska ZB, Bonfield W. Morphology and ultrastructure of the interface between hydroxyapatite–polyhydroxybutyrate composite implant and bone. J Mater Sci Mater Med 1997;8:379–83.
[30] Lauren Shor, Selc-uk Guceri, Xuejun Wen, Milind Gandhi, Wei Sun, Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials, Volume 28, Issue 35, December 2007, Pages 5291-5297
[31] McKinney JS, Huang D, Athanasiou KA, Agrawal CM. Degradation kinetics of highly permeable biodegradable scaffolds. In: 25th Annual Meeting of the Society for Biomaterials, Providence, 1999.
[32] Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J. Biomed Mater Res 1993; 27:183–189.
[33] Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R. Laminated
three-dimensional biodegradable foams for use in tissue engineering. Biomater 1993;14:323–330.
[34] Mooney DJ, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP, Langer R. Stabilized polyglycolic acid fiber-based tubes for tissue engineering. Biomater 1996;17:115–124.
[35] Morrison C, Macnair R, Grant MH, MacDonald C, Wykman A, Goldie I. In vitro biocompatibility testing of polymers for orthopedic implants using cultured fibroblasts and osteoblasts. Biomaterials 1995;16:987-92.
[36] Abu Bakar M. S. , M.H.W. Cheng, S.M. Tang, S.C. Yu, K. Liao, C.T. Tan,K.A. Khor, P. Cheang, Tensile properties, tension–tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 24 (2003) 2245–2250.
[37] Ning CQ, Zhou Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials 2002;23:2909–15.
[38] Oguchi O, Ishikawa K, Mizoue K, Seto K, Eguchi G. Long-term histological evaluation of hydroxyapatite ceramics in humans. Biomaterials 1995;16:33-38.
[39] Park A, Wu B, Griffith LG. Integration of surface modification and 3D fabrication techniques to prepare patterned poly(Llactide) substrates allowing regionally selective cell adhesion. J Biomater Sci Polym Ed 1998;9:89–110.
[40] Patrick Jr CW, Mikos AG, Mcintire LV. Prospectus of tissue engineering. In: Patrick Jr CW, Mikos AG, Mcintire LV, editors. Frontiers in tissue engineering. New York: Pergamon, 1998. p. 3–5.
[41] Dawson P. C. , D. J. Blundell, X-ray data for poly(aryl ether ketones). Polymer, 21 (1980), pp.577-578
[42] Ramakrishna S, Mayer J, Wintermantel E, Kam Leong W. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 2001;61:1189–224.
[43] Ripamonti U. Calvarial reconstruction in baboons with porous hydroxyapatite. J Craniofac Surg 1992;3:149 –159.
[44] Rosen HM. Porous, block hydroxyapatite as an interpositional bone graft substitute in orthognathic surgery. Plast Reconstr Surg 1989;83:985–990; discussion 991–993.
[45] Sarasua JR, Remiru PM. The mechanical behaviour of PEEK short fiber composites. J. Mater Sci 1995;30:3501–8.
[46] Shucong Yu, Kithva Prakash Hariram, Rajendra Kumar, Philip Cheang,Khor Khiam Aik, In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials 26 (2005) 2343–2352.
[47] Tamilselvi S. , V. Raman, N. Rajendran, Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochimica Acta 52 (2006) 839–846.
[48] Bai S. J. , M. Dotrong, E. J. Soloski, R.C. Evers, Journal of Polymer
Science, Part B: Polymer Physics, 29 (1991), pp.119-128
[49] Tana KH, C.K. Chuaa CK, Leonga KF, Cheaha CM, Cheangb P, Abu Bakarb MS, Chac SW. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends Biomaterials 2003;24 :3115-23.
[50] Totha, TM, Wanga M, Estesb BT, Scifertd JL, Seim III HB, Turnere AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 2006;27 :324-34.
[51] Wang M, Yue CY, Chua B. Production and evaluation of hydroxyapatite reinforced polysulfone for tissue replacement. J Mater Sci Mater Med 2001;9:821–6.
[52] Wenz LM, Merritt K, Brown SA, Moet A, Steffee AD. In-vitro biocompatibility of polyetheretherketone and polysulfone composites. Biomed Mater Res 1990;24:207–15.
[53] Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering: Part 1—Traditional factors. Tissue Eng 2001;7(6):679–90.
[54] Zhang Guigen, Robert A. Latour, Jr , John M. Kennedy, H. Del Schutte, Jr and Richard J. Friedman , Long-term compressive property durability of carbon fibre-reinforced polyetheretherketone composite in physiological saline . Biomaterials 1996;17:781-789.
[55] 蔡健民,以奈米粉體強化之高性能高分子 PEEK 製程與機械性質分析。國立中山大學材料科學研究所碩士論文,中華民國九十二年七月。[56] 陳欣蘋,工程塑膠 PEEK 以電漿表面改質及接枝聚合固定肝素之研究。私立大同大學材料工程研究所碩士論文,中華民國九十六年六月。[57] 洪翠禪,材料表面的冷電漿聚合及表面接枝聚合水膠在生物醫學的應用。私立大同大學材料工程研究所碩士論文,中華民國九十六年七月。[58] 陳文正,氫氧基磷灰石複合骨水泥基本性質及植入結果研究。國立成功大學材料科學及工程學系博士論文,中華民國九十一年九月。[59] 葉郁仁,氫氧基磷灰石複合骨水泥基本性質及植入結果研究。私立嘉南藥理科技大學生物科技研究所碩士論文,中華民國九十二年七月。
[60] 俞耀庭等編著,生物醫用材料,新文京開發出版股份有限公司(2004)
[61] 詹惠雯,探討脈衝式電磁場促進類骨母細胞增生之機轉。私立中原大學醫學工程學系碩士論文,中華民國九十二年七月。[62] 蔡明慈,不同刺激時間單脈衝電磁場對造骨細胞骨髓細胞共同培養形成之類蝕骨細胞凋亡的影響。私立中原大學醫學工程學系碩士論文,中華民國九十一年七月。