(3.237.178.91) 您好!臺灣時間:2021/03/07 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葛宇淪
研究生(外文):Yu-Lun Ke
論文名稱:應用於骨組織工程之多孔形HA-PEEK生物複合材料之研究
論文名稱(外文):Macroporous HA-PEEK Biocomposites for Bone Tissue Engineering
指導教授:林鴻儒林鴻儒引用關係
指導教授(外文):Hong-Ru Ling
學位類別:碩士
校院名稱:南台科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:81
中文關鍵詞:聚醚酮氫氧基磷灰石骨組織工程
外文關鍵詞:polyetheretherketonehydroxyapatitebone tissue engineering
相關次數:
  • 被引用被引用:1
  • 點閱點閱:534
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:140
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們在高性能高分子材料聚醚酮(Polyetheretherketone, PEEK)中,加入不同比例含量的氫氧基磷灰石(hydroxyapatite, HA)以及適量的發泡劑(Blowing agent),透過高溫燒結的方式製作多孔形HA/PEEK生物複合材料,添加的HA含量比例分為2%、4%、6%、8%、10%。本研究所製得的多孔形HA/PEEK生物複合材料孔隙率約63~77%,孔洞大小約330~530μm。在活體外的生物活性測試方面,我們將各種不同比例的HA/PEEK複合材料以及純PEEK浸泡在模擬體液(Simulated body fluid, SBF)中,經過不同的浸泡天數以SEM及XRD觀察HA/PEEK複合材料以及純PEEK上磷灰石的生成,浸泡天數分別為7、14、21、28天,藉此測試材料的生物活性。我們發現純PEEK為一種惰性材料,即使浸泡了28天也不會有磷灰石的生成。隨著材料中HA含量的增加以及延長浸泡在模擬體液中的時間,材料表面上所生成的磷灰石晶體顆粒數量也會隨之增加,並且所生成的晶體顆粒尺寸也會比較大,甚至會沉積在材料的表面。高HA含量的材料經發泡過後,所產生的孔洞尺寸也較大。在熱性質方面,我們以DSC及TGA探討不同含量的HA對材料的熱性質差異,我們發現隨著材料中HA含量的提升,其Tg以及Td也皆會提升。在親水性方面,我們對材料表面進行六甲基二矽胺烷(Hexamethyldisilazane, HMDSZ)電漿處理以及氧氣電漿活化,發現經電漿處理後,材料表面之水接觸角度皆小於10°,材料親水性明顯提升。在機械性質方面,我們將各種不同比例的HA/PEEK複合材料透過壓縮試驗測試不同含量比例的HA對PEEK材料機械性質的影響,並且以純PEEK當對照組做比較。我們發現,隨著多孔形HA/PEEK複合材料中HA含量的提昇,所發泡形成的孔洞越大,機械性質反而降低,將此複合材料植入體內應用於骨組織工程時,此結果可避免應力屏蔽現象。
在生物相容性測試方面,本研究針對 HA 含量為 6% 的多孔形HA/PEEK 複合材料改變不同的處理條件進行成骨細胞培養,培養天數分別為 1、3、5 天。處理條件分為未浸泡 SBF 的6% HA/PEEK 多孔型複合材料、浸泡在 SBF 中 28 天的 6% HA/PEEK 多孔型複合材料以及經電漿處理的6% HA/PEEK 多孔型複合材料。由結果發現,浸泡在 SBF 中 28 天的 6% HA/PEEK 多孔型複合材料由於表面沉積的 HA 含量較多,因此表面所貼附的細胞量高於其他未浸泡 SBF 的6% HA/PEEK 多孔型複合材料,證明隨著材料中 HA 含量的提升,細胞貼附的密度亦隨之增加,相對也提升了材料的生物相容性。
In this study, a series of polyetheretherketone (PEEK)-hydroxyapatite (HA) macroporous composites containing 2, 4, 6, 8, and 10 (wt %) HA were prepared by sintering at high temperature. To investigate their bioactivity in vitro, these macroporous composites were immersed in simulated body fluid (SBF) for desired period of time. The macroporous PEEK was found to be inert in SBF without any apatite formation on its surface even after being exposed to SBF for 28 days. On the other hand, the size and number of apatite formed on PEEK-HA macroporous composites were increased with HA content and time of incubation. The pore size of composite increased with HA content, which in turn results in decreasing of mechanical properties of composites. Nevertheless it may avoid the stress shield from composite scaffolds once they are implanted for bone tissue engineering application.
摘要--------------------------------------------------------------------------------I
目錄-------------------------------------------------------------------------------IV
表目錄-----------------------------------------------------------------------------V
圖目錄----------------------------------------------------------------------------VI

一、 前言-------------------------------------------------------------------------1

二、 文獻回顧-------------------------------------------------------------------4
2.1聚醚醚酮(Polyetheretherketone, PEEK)之簡介 ------------------4
2.2 氫氧基磷灰石(hydroxyapatite, HA)之簡介 ---------------------5
2.3 組織工程簡介 --------------------------------------------------------6
2.3-1 理想的組織工程支架應有之條件-------------------------------9
2.3-2 骨骼組織簡介------------------------------------------------------11
2.3-3 造骨細胞 (Osteoblast) 簡介------------------------------------11
2.4 電漿理論--------------------------------------------------------------12
2.4-1 電漿簡介 ----------------------------------------------------------12
2.4-2 電漿表面改質------------------------------------------------------14

三、材料與方法-----------------------------------------------------------------20
3.1 實驗流程圖----------------------------------------------------------- 20
3.2 製備HA/PEEK複合材料所需之藥品----------------------------21
3.3 配製模擬體液所需之藥品-----------------------------------------21
3.4 UMR-106 細胞株培養所需之藥品-------------------------------21
3.5 電漿沉積使用之單體-----------------------------------------------22
3.6 實驗儀器--------------------------------------------------------------22
3.7 UMR-106 細胞諸培養所需之儀器-------------------------------23
3.8 實驗方法--------------------------------------------------------------23
3.8-1多孔型HA/PEEK複合材料製備-------------------------------23
3.8-2 模擬體液配製方法------------------------------------------------24
3.8-3 HA/PEEK複合材料浸泡模擬體液步驟------------------------24
3.8-4 多孔形HA/PEEK複合材料孔隙率(porosity)計算-----------24
3.8-5 孔洞大小(pore size)的評估--------------------------------------25
3.8-6 場發射型掃描式電子顯微鏡(FE-SEM)表面型態觀察-----25
3.8-7 X光繞射分析(XRD)-----------------------------------------------26
3.8-8 機械性質測試------------------------------------------------------26
3.8-9 熱示差掃瞄分析(DSC)-玻璃轉移溫度(Tg)分析-------------26
3.8-10 熱重損失分析(TGA)-熱裂解溫度分析----------------------27
3.8-11 冷電漿沉積膜處理----------------------------------------------27
3.8-12 親水性測試-水接觸角量測------------------------------------27
3.9 UMR-106 細胞珠培養藥品配置----------------------------------28
3.9-1 培養基 (Medium) 配置------------------------------------------28
3.9-2 磷酸鹽緩衝溶液 (PBS) 配置-----------------------------------28
3.9-3 胎牛血清 (Fetal Bovine Serum, FBS) 分裝------------------29
3.9-4 盤尼西林-鏈黴素 (Penicillin-Streptomycin, PS) 分裝-----29
3.9-5 胰蛋白酵素-乙二胺四乙酸 (Trypsin-EDTA) 分裝---------29
3.9-6 UMR-106 細胞株植入支架--------------------------------------29
3.7細胞計數----------------------------------------------------------------30

四、結果與討論----------------------------------------------------------------34
4.1多孔形HA-PEEK複合材料之製備--------------------------------34
4.1-2 熱重損失分析(TGA)-熱裂解溫度(Td)分析-------------------35
4.1-3 熱示差掃瞄分析(DSC)-玻璃轉移溫度(Tg)分析-------------36
4.2多孔形HA/PEEK複合材料在活體外之磷灰石之生成--------36
4.3 X光繞射分析----------------------------------------------------------38
4.4 機械性質測試--------------------------------------------------------39
4.5親水性測試-水接觸角量測-----------------------------------------39
4.6 成骨細胞培養---------------------------------------------------------41

五、結論---------------------------------------------------------------------------68
參考文獻--------------------------------------------------------------------------70
附錄--------------------------------------------------------------------------------80
附錄一、比重瓶(Pycnometer)法----------------------------------------80
附錄二、本實驗使用之HMDSZ電漿處理器示意圖----------------81



















表目錄
表2-1 高分子PEEK的基本性質----------------------------------------------16
表2-2 高分子PEEK的機械性質--------------------------------------------17
表2-3 高分子PEEK的化學性質--------------------------------------------18
表2-4 氫氧基磷灰石的基本性質--------------------------------------------19
表3-1 製備多孔形HA/PEEK複合材料之進料組成---------------------32
表3-2 模擬體液(SBF)之含量組成------------------------------------------32
表 3-3磷酸鹽緩衝溶液 (PBS) 之含量組成------------------------------33
表4-1 不同HA含量比例的多孔形HA/PEEK複合材料之孔隙率及孔洞大小-----------------------------------------------------------------------------62
表 4-2不同 HA 含量比例的多孔形HA/PEEK複合材料浸泡在 SBF 中不同天數下的 Ca 含量 (AT%) 總表-----------------------------------62
表 4-3不同 HA 含量比例的多孔形HA/PEEK複合材料浸泡在 SBF 中不同天數下的 P 含量 (AT%) 總表-------------------------------------63
表4-4 不同HA含量比例的多孔形HA/PEEK複合材料之Td--------63
表4-5 不同HA含量比例的多孔形HA/PEEK複合材料之Tg---------63
表4-6 不同HA含量比例的多孔形HA/PEEK複合材料之水接觸角-67



圖目錄
圖2-1 高分子PEEK之化學結構--------------------------------------------19
圖 2-2 造骨系列細胞分化模型----------------------------------------------20
圖4.1 多孔形純PEEK材料浸泡在SBF溶液前以及浸泡在SBF溶液中28天後的FE-SEM表面照片------------------------------------43
圖4.2 多孔形HA/PEEK複合材料浸泡在SBF中7天的FE-sem照片--------------------------------------------------------------------------------------44
圖4.3-1 多孔形HA/PEEK複合材料浸泡在SBF中7天的EDS分析圖-----------------------------------------------------------------------45
圖4.3-2 多孔形HA/PEEK複合材料浸泡在SBF中7天的EDS分析圖-----------------------------------------------------------------------46
圖4.4 多孔形HA/PEEK浸泡在SBF中14天的FE-SEM照片------47
圖4.5-1 多孔形HA/PEEK複合材料浸泡在SBF中14天的EDS分析圖--------------------------------------------------------------------------48
圖4.5-2 多孔形HA/PEEK複合材料浸泡在SBF中14天的EDS分析圖--------------------------------------------------------------------------49
圖4.6 多孔形HA/PEEK浸泡在SBF中21天的FE-SEM照片------50
圖4.7-1 多孔形HA/PEEK複合材料浸泡在SBF中21天的EDS分析圖-----------------------------------------------------------------------51
圖4.7-2 多孔形HA/PEEK複合材料浸泡在SBF中21天的EDS分析圖-----------------------------------------------------------------------52

圖4.8 多孔形HA/PEEK浸泡在SBF中28天的FE-SEM照片------53
圖4.9-1 多孔形HA/PEEK複合材料浸泡在SBF中28天的EDS分析圖-----------------------------------------------------------------------54
圖4.9-2 多孔形HA/PEEK複合材料浸泡在SBF中28天的EDS分析圖-----------------------------------------------------------------------55
圖4.10 多孔形純PEEK材料浸泡在SBF溶液前以及浸泡在SBF溶液中28天後的XRD繞射圖------------------------------------------56
圖4.11不同HA含量的多孔形純PEEK材料浸泡在SBF溶液前的XRD繞射圖----------------------------------------------------------57
圖4.12 浸泡在SBF溶液中,不同天數的多孔形HA/PEEK複合材料XRD繞射圖------------------------------------------------------------58
圖4.13 多孔形HA/PEEK複合材料機械性質測試圖-------------------59
圖4.14 多孔形HA/PEEK複合材料TGA分析曲線圖------------------60
圖4.15 不同HA含量比例的多孔形HA/PEEK複合材料DSC分析曲線圖-----------------------------------------------------------------61
圖4.16 不同HA含量比例的多孔形HA/PEEK複合材料未經電漿處理的水接觸角示意圖-----------------------------------------------64
圖4.16-1 不同HA含量比例的多孔形HA/PEEK複合材料經HMDSZ電漿處理後的水接觸角示意圖-----------------------------------65
圖4.16-2 不同HA含量比例的多孔形HA/PEEK複合材料經HMDSZ+O2電漿處理後的水接觸角示意圖-------------------66
圖 4-17 不同天數以及不同處理條件下成骨細胞計數示意圖-------68
圖 4-18 成骨細胞經培養 5 天後貼附在支架上之 SEM 照片------69
[1] Abu Bakar MS, Cheang P, Khor KA. Mechanical properties of injection molded hydroxyapatite–polyetheretherketone biocomposites. Compos Sci Technol 2003;63:421–5.

[2] Abu Bakar MS, Cheng MHW, Tang SM, Yu SC, Liao K, Tan CT, Khor KA, Cheang P. Tensile properties, tension–tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 2003;24:2245–50.

[3] Binnaz Yoruc Hazar, A. Preparation and in vitro bioactivity of CaSiO3 powders. Ceramics International 33 (2007) 687–692

[4] Baksh D, Davies JE, Kim S. Three-dimensional matrices of calcium polyphosphates support bone growth in vitro and in vivo. J Mater Sci: Mater Med 1998;9:743–8.

[5] Barton AJ, Sagers RD, Pitt WG. Bacterial adhesion to orthopaedic implant polymers. J Biomed Mater Res 1996;30: 403–10.

[6] Barton AJ, Sagers RD, Pitt WG. Bacterial adhesion to orthopaedic implant polymers. J Biomed Mater Res 1996;30: 403–10.




[7] Bergeret Aand N. Alberola , A study of the interphase in styrene-methacrylic acid copolymer/glass bead composites . Polymer 1996;37:2759-2765.

[8] Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 1996;17:137–46.

[9] Chengtie Wu, Jiang Chang, Junying Wang, Siyu Ni, Wanyin Zhai, Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials 26,June (2005),Pages 2925-2931.

[10] Evans SL, Gregson PJ. Composite technology in load-bearing orthopedic implants. Biomaterials 1998;9:1329–42.

[11] Freed L, Marquis JC, Nohria A, Emmanual J, Mikos AG. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993;27:11–23.

[12] Fujiharaa K, Huanga ZM, Ramakrishnaa S, Satknananthamc K, Hamadad. HPerformance study of braided carbon/PEEK composite compression bone plates. Biomaterials 2003;24:2661-67.

[13] Fujiharaa K, Huanga ZM, Ramakrishnaa S, Satknananthamc K, Hamadad H. Feasibility of knitted carbon/PEEKcomposites for orthopedic bone plates. Biomaterilas 2004;25:3877-85.

[14] Gomi K, Lowenberg B, Shapiro G, Davies JE. Resorption of sintered synthetic hydroxyapatite by osteoclasts in vitro. Biomaterials 1993;14:91–96.

[15] Habal MB. Bone–ceramic composite for enhancement of bone graft regeneration. J Craniofac Surg 1991;2:27–32.

[16] Holmes R, Mooney V, Bucholz R, Tencer A. A coralline hydroxyapatite bone graft substitute. Preliminary report. Clin Orthop 1984:252–262.

[17] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21:2529–43.

[18] Hirotaka Maeda, Toshihiro Kasuga, Masayuki Nogami, Minoru Ueda, Preparation of bonelike apatite composite for tissue engineering scaffold. Science and Technology of Advanced Materials 6 (2005) 48–53.
[19] Sopyan I. , M. Mel, S. Rameshc, K.A. Khalid. Porous hydroxyapatite for artificial bone applications. Science and Technology of Advanced Materials 8 (2007) 116–123.
[20] Jarcho M, Kay JF, Gumaer KI, Doremus RH, Drobeck HP. Tissue, cellular and subcellular events at a bone–ceramic hydroxylapatite interface. J Bioeng 1977;1:79 –92.


[21] Jockisch KA, Brown SA, Bauer TW, Merrit K. Biological response to chopped carbon-fibre reinforced PEEK. J Biomed Mater Res 1992;26:133–46.

[22] Katzera A, Marquardtb H, Westendorf J, Weningc JV, von Foerstera G.
Polyetheretherketone Fcytotoxicity and mutagenicity in vitro Biomaterials 2002;23 :1749-59.

[23] Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J, Mukai K, Griffith LG, Vacanti JP. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymeric scaffold with an intrinsic network of channels Ann Surg 1998;228:8–13.

[24] Kokubo T, Kushitani H, Kitsugi S, Yammamuro T. Solutions able to reproduce in vivo surface structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 1990;24:721–34.

[25] Liang JZ , The melt elastic behavior of polypropylene/glass bead composites in capillary flow .Polymer Testing 2002;21:927-931.

[26] Liang JZ and R. K. Y. Li , Brittle–ductile transition in polypropylene filled with glass beads . Polymer 1999;40:3191-3195.




[27] Lin HR, Kuo CJ, Yang CY, Shaw SY, Wu YJ. Preparation of macroporous biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen additives. J Biomed Mater Res 2002;63:271–279.

[28] Lin HR, Yeh YJ. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J Biomed Mater Res Part B: Appl Biomater 2004;71B:52-65.

[29] Luklinska ZB, Bonfield W. Morphology and ultrastructure of the interface between hydroxyapatite–polyhydroxybutyrate composite implant and bone. J Mater Sci Mater Med 1997;8:379–83.

[30] Lauren Shor, Selc-uk Guceri, Xuejun Wen, Milind Gandhi, Wei Sun, Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials, Volume 28, Issue 35, December 2007, Pages 5291-5297

[31] McKinney JS, Huang D, Athanasiou KA, Agrawal CM. Degradation kinetics of highly permeable biodegradable scaffolds. In: 25th Annual Meeting of the Society for Biomaterials, Providence, 1999.

[32] Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J. Biomed Mater Res 1993; 27:183–189.

[33] Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R. Laminated
three-dimensional biodegradable foams for use in tissue engineering. Biomater 1993;14:323–330.

[34] Mooney DJ, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP, Langer R. Stabilized polyglycolic acid fiber-based tubes for tissue engineering. Biomater 1996;17:115–124.

[35] Morrison C, Macnair R, Grant MH, MacDonald C, Wykman A, Goldie I. In vitro biocompatibility testing of polymers for orthopedic implants using cultured fibroblasts and osteoblasts. Biomaterials 1995;16:987-92.

[36] Abu Bakar M. S. , M.H.W. Cheng, S.M. Tang, S.C. Yu, K. Liao, C.T. Tan,K.A. Khor, P. Cheang, Tensile properties, tension–tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 24 (2003) 2245–2250.

[37] Ning CQ, Zhou Y. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials 2002;23:2909–15.

[38] Oguchi O, Ishikawa K, Mizoue K, Seto K, Eguchi G. Long-term histological evaluation of hydroxyapatite ceramics in humans. Biomaterials 1995;16:33-38.

[39] Park A, Wu B, Griffith LG. Integration of surface modification and 3D fabrication techniques to prepare patterned poly(Llactide) substrates allowing regionally selective cell adhesion. J Biomater Sci Polym Ed 1998;9:89–110.

[40] Patrick Jr CW, Mikos AG, Mcintire LV. Prospectus of tissue engineering. In: Patrick Jr CW, Mikos AG, Mcintire LV, editors. Frontiers in tissue engineering. New York: Pergamon, 1998. p. 3–5.

[41] Dawson P. C. , D. J. Blundell, X-ray data for poly(aryl ether ketones). Polymer, 21 (1980), pp.577-578

[42] Ramakrishna S, Mayer J, Wintermantel E, Kam Leong W. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 2001;61:1189–224.

[43] Ripamonti U. Calvarial reconstruction in baboons with porous hydroxyapatite. J Craniofac Surg 1992;3:149 –159.

[44] Rosen HM. Porous, block hydroxyapatite as an interpositional bone graft substitute in orthognathic surgery. Plast Reconstr Surg 1989;83:985–990; discussion 991–993.

[45] Sarasua JR, Remiru PM. The mechanical behaviour of PEEK short fiber composites. J. Mater Sci 1995;30:3501–8.


[46] Shucong Yu, Kithva Prakash Hariram, Rajendra Kumar, Philip Cheang,Khor Khiam Aik, In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials 26 (2005) 2343–2352.

[47] Tamilselvi S. , V. Raman, N. Rajendran, Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochimica Acta 52 (2006) 839–846.

[48] Bai S. J. , M. Dotrong, E. J. Soloski, R.C. Evers, Journal of Polymer
Science, Part B: Polymer Physics, 29 (1991), pp.119-128

[49] Tana KH, C.K. Chuaa CK, Leonga KF, Cheaha CM, Cheangb P, Abu Bakarb MS, Chac SW. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends Biomaterials 2003;24 :3115-23.

[50] Totha, TM, Wanga M, Estesb BT, Scifertd JL, Seim III HB, Turnere AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 2006;27 :324-34.

[51] Wang M, Yue CY, Chua B. Production and evaluation of hydroxyapatite reinforced polysulfone for tissue replacement. J Mater Sci Mater Med 2001;9:821–6.


[52] Wenz LM, Merritt K, Brown SA, Moet A, Steffee AD. In-vitro biocompatibility of polyetheretherketone and polysulfone composites. Biomed Mater Res 1990;24:207–15.

[53] Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering: Part 1—Traditional factors. Tissue Eng 2001;7(6):679–90.

[54] Zhang Guigen, Robert A. Latour, Jr , John M. Kennedy, H. Del Schutte, Jr and Richard J. Friedman , Long-term compressive property durability of carbon fibre-reinforced polyetheretherketone composite in physiological saline . Biomaterials 1996;17:781-789.

[55] 蔡健民,以奈米粉體強化之高性能高分子 PEEK 製程與機械性質分析。國立中山大學材料科學研究所碩士論文,中華民國九十二年七月。

[56] 陳欣蘋,工程塑膠 PEEK 以電漿表面改質及接枝聚合固定肝素之研究。私立大同大學材料工程研究所碩士論文,中華民國九十六年六月。

[57] 洪翠禪,材料表面的冷電漿聚合及表面接枝聚合水膠在生物醫學的應用。私立大同大學材料工程研究所碩士論文,中華民國九十六年七月。

[58] 陳文正,氫氧基磷灰石複合骨水泥基本性質及植入結果研究。國立成功大學材料科學及工程學系博士論文,中華民國九十一年九月。

[59] 葉郁仁,氫氧基磷灰石複合骨水泥基本性質及植入結果研究。私立嘉南藥理科技大學生物科技研究所碩士論文,中華民國九十二年七月。

[60] 俞耀庭等編著,生物醫用材料,新文京開發出版股份有限公司(2004)

[61] 詹惠雯,探討脈衝式電磁場促進類骨母細胞增生之機轉。私立中原大學醫學工程學系碩士論文,中華民國九十二年七月。

[62] 蔡明慈,不同刺激時間單脈衝電磁場對造骨細胞骨髓細胞共同培養形成之類蝕骨細胞凋亡的影響。私立中原大學醫學工程學系碩士論文,中華民國九十一年七月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔