(3.235.11.178) 您好!臺灣時間:2021/03/07 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃逸彬
研究生(外文):I-Pin Huang
論文名稱:奈米碳管/奈米碳團簇作為染料敏化太陽能電池的對電極之合成與特性分析
論文名稱(外文):Synthesis and Characterization of Carbon Nanotube/ Nanocluster as Counter Electrode in Dye Sensitized Solar Cell
指導教授:吳文端
指導教授(外文):Wen-Tuan Wu
學位類別:碩士
校院名稱:南台科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:82
中文關鍵詞:敏化太陽能電池奈米碳材
外文關鍵詞:dye-sensitized solar cellnano-carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:747
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:587
  • 收藏至我的研究室書目清單書目收藏:0
為了開發有效率且能降低成本之染料敏化太陽能電池之對電極,本研究在玻璃和氧化銦錫基板上成長奈米碳簇和奈米碳管,並將此奈米碳材於應用為敏化染料太陽能電池之對電極。探討以奈米碳材為對電極其表面型態、結構、表面平均粗糙度和內部轉換電阻對電池之影響。
本研究是採用電子迴旋共振式電漿輔助化學氣相沉積系統成長奈米碳材電極,實驗參數包括觸媒之影響、基板之影響、溫度之影響以及壓力之影響。利用高解析掃描式電子顯微鏡與穿透式電子顯微鏡來觀察奈米碳材之表面型態與結構、四點量測來分析膜之片電阻、原子力顯微鏡分析其表面粗操度和利用恆電位儀分析奈米碳材對電極與電解液界面之內部轉換阻抗。研究結果顯示,在以低製程溫度在氧化銦錫基板上成長之奈米碳簇對電極有高比表面積且對電解液有好的化學阻抗,有效反應面積為1.82cm2之奈米碳簇對電極可得到低界面電荷轉換阻抗,大約為5.51Ωcm2。
In order to search for an efficient and a low cost counter electrode in a dye-sensitized solar cell﹐carbon nanoclusters and carbon nanotubes grown onto glass and ITO substrates were conducted to explore the performance of the counter electrode in a dye-sensitized solar cell﹒The effects of the morphology, average roughness and charge-transfer resistance of nano-carbon material counter electrode on the performance of a dye-sensitized solar cell were investigated﹒
The carbon nanoclusters counter electrode was grown by electron cyclotron resonance chemical vapor deposition (ECR-CVD) method and its’ characteristics were analyzed﹒The experimental parameters include catalyst﹐substrate﹐temperature and pressure﹒The surface morphology and structure of nano-carbon materials were examined by scanning electron microscope (SEM) and transmission electron microscope (TEM)﹒The sheet resistance was examined by four-point probe﹒The roughness factor was examined by atomic force microscopy (AFM)﹒The charge-transfer resistance will be examined by autolab potentiostat﹒The result shows that carbon nanocluster counter electrodes grown at low deposition temperature have a large average surface roughness, and a good chemical stability to I3-/I- couple. A low charge transfer impedance (RCT) of approximately 5.51Ωcm2 can be obtained for an electrode area of 1.82cm2.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 理論基礎 4
2.1 染料敏化太陽能電池 4
2.1.1染料敏化太陽能電池的結構 4
2.1.2 染料敏化太陽能電池的工作原理 8
2.1.3 染料敏化太陽能電池對電極的研究 11
2.2 奈米碳管 14
2.2.1奈米碳管之介紹 14
2.2.2 奈米碳管之特性 17
2.2.3 奈米碳管之合成方法 19
2.3 奈米碳管之合成機制 20
第三章 實驗步驟與實驗設備 22
3.1 實驗流程 22
3.2 實驗設備 23
3.2.1 電子束蒸鍍系統(E-beam) 23
3.2.2 離子束蒸鍍系統(Ion-beam Sputter) 24
3.2.3 電子迴旋共振系統(ECR-CVD) 25
3.3 實驗材料 26
3.3.1 基板材料 26
3.3.2 蒸鍍及濺鍍靶材 26
3.3.3 實驗氣體 26
3.4 實驗步驟 27
3.4.1 基板之準備 27
3.4.2 柰米觸媒層之處理 27
3.4.3 奈米碳材電極之成長 27
3.4.4 性質測試與分析 28
3.5 量測分析設備 30
3.5.1 高解析掃瞄式電子顯微鏡(HR-SEM) 30
3.5.2 場發射型掃瞄式電子顯微鏡(FE-SEM) 31
3.5.3 場發射穿透式電子顯微鏡(FEG-TEM) 32
3.5.4 原子力顯微鏡(AFM) 33
3.5.5 四點探針(Four-Point Probe) 34

3.5.6 微拉曼光譜儀(Micro-Raman Spectrometer) 35
3.5.7 恆電位分析儀(Autolab Potentiostat) 36
第四章 結果與討論 37
4.1 金屬觸媒在玻璃基板及ITO基板之前處理製程 37
4.1.1 氣體對奈米觸媒粒子形成之影響 37
4.1.2 微波功率對奈米觸媒粒子形成之影響 39
4.1.3 時間對奈米觸媒粒子形成之影響 41
4.2 基板介面對奈米碳管合成之影響 43
4.2.1 基板溫度效應 43
4.2.2 金屬觸媒材料效應 49
4.3 奈米碳材之成長分析 57
4.3.1 壓力對成長奈米碳管於玻璃基板上之影響 57
4.3.2 溫度對成長奈米碳管於玻璃基板上之影響 60
4.3.3 溫度對成長奈米碳簇於ITO基板上之影響 62
4.3.4 奈米碳材電化學阻抗特性之分析 65
第五章 結論 77
5.1 結論 77
參考文獻 78
1. Gerischer H, Tributsch H. Ber. Bunsenges. Phys. Chem., 72 437-445 (1986).
2. M. K. Nazeeruddin, A. Kay, I. Rodicio, R Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Graetzel, J. Am. Chem. Soc. 115 6382 (1993).
3. N. Papageorgiou, W. F. Maier, M. Grätzel, “An Iodine/Triiodide Reduction Electorocatalyst For Aqueous and Organic Media”, J. Electrochem. Soc., 144 876 (1997).
4. Xiaoming Fang1, Tingli Ma*, Guoqing Guan, Morito Akiyama, Tetsya Kida, Eiichi Abe, J. Electroanal. Chem. 570 257-263 (2004).
5. A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells 44 99 (1996).
6. Kiyoaki Imotoa, Kohashin Takahahib,*, Takahiro Yamaguchib, Teruhisa Komurab, Jun-ichi Nakamuraa,c, Kazuhiko Muratad, Sol. Energy Mater. Sol. Cells 79 459-469 (2003).
7. Park, J. van de Lagemaat, A. J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells”, J. Phys. Chem. B 104 8989 (2000).
8. Park, G. Schlichtho1rl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, J. Frank, “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4”, J. Phys. Chem. B 103 3308 (1999).
9. S. Ito, Takayuki Kitamura, Yuji Wada, Shozo Yanagida, “Facilefabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating”, Sol. Energy Mater. Sol. Cells 76 3 (2003).
10. S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells”, J. Phys. Chem. B 106 10004 (2002).
11. 劉茂煌, 奈米光電電池, 工業材料 203 期91-97
12. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M Grätzel, “ Nanocrystalline Titanium Oxide Electrode for Photovoltaic Application”, J.Am. Ceram. Soc. 80 3157 (1997).
13. A. Zaban, J. Zhang, Y. Diamant, O. Melemed, and J. Bisquert, “Internal reference electrode in dye sensitized solar cells for three-electrode electrochemical characterizations”, J. Phys. Chem. B 107 6022 (2003).
14. G.P. Smestad, M. Gratzel, M. J. Chem. Educ. 75 752-756 (1998).
15. M. Gratzel, “Photoelectrochemical cells.” Nature Vol. 414, 338-344, Nov 15, (2001).
16. N. Koide, Y. Chiba, A. Islam, R. Komiya. N. Fuke, A .Fukui, R. Yamanaka and L. Han, IEEE 175 (2005).
17. L. Han, N. Koide, Y. Chiba, and T. Mitate, Appl. Phys. Lett. 84 2433 (2004).
18. K. Suzuki, M. Yamaguchi, M. Kumagai, and S.Yanagiday, Chemistry Letters 32 28 (2003).
19. Liyuan Han*, Naoki Koide, Yasuo Chiba, Ashraful Islam, Takehito Mitate, C. R. Chimie 9 645-651 (2006).
20. M. lkegami, K. Miyoshi, T. Miyasaka, K. Teshima, T. C. Wei, C. C. Wan, and Y. Y. Wang, App. Phy. Lett. 90, 153122 (2007).
21. T. C. Wei, C. C. Wan, and Y. Y. Wang, App. Phy. Lett. 88, 103122 (2006).
22. Easwaramoorthi Ramasamy, Won Jae Lee, Dong Yoon Lee, and Jae Sung Song, App. Phy. Lett. 90.193103 (2007).
23. Britto PJ, Santhanam KSV, Rubio A, et al. Adv Mater. 11 154 (1998).
24. Dresselhaus M.S., Dresselhaus G., Saito R., Carbon 33 883-891 (1995).
25. Dresselhaus M.S., Dresselhaus G., Saito R., Phys. Rev. B 45 6234 (1992).Suzuki, M. Yamaguchi, M. Kumagai, and S.Yanagiday, Chemistry Letters 32 28 (2003).
26. S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354, p.p.
27. Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C. Fullerenes and Carbon Nanotubes, Academic,San Diego, (1996).
28. Treacy M.M.J., Ebbesen T.W., Gibson J.M., Nature 381 678 (1996).
29. Krishnan A., Dujardin E., Ebbesen T.W., Phys. Rev. B 58 14013 (1998).
30. Withers J.C., Loutfy R.D., Lowe T.P., Fullerene Science Technology 5(1) 1 (1997).
31. Iijima S., Ichihashi T., Nature 363 603 (1993).
32. Rodriguez N.M., J. Mater Res. 8(12) 3233 (1993).
33. Hatta N., Murata K., Chem. Phys. Lett. 217(4) 398 (1994).
34. LiW Z., Xie S.S., Qian L.X., Science 274 1701 (1996).
35. Kanzow H., Ding A., Phys. Rev. B 60(15) 11180-11186 (1999).
36. Baker R.T.K., Harris P.S., Thomas R.B., Journal of Catalyst 30 86 (1973).
37. Oberlin A., Endo M., Koyama T., Jap. T. Appl. Phys. 16 119 (1997).
38. Sinnott S.B., Andrews R., Qian D., Chem. Phys. Lett. 315 25 (1999).
39. http://www.recipnet.indiana.edu/common/Simple_stuff/hexane.htm
40. http://chipo.chem.uic.edu/web1/ocol/spec/IR1.htm
41. V. Švorcík.O. Kubová.P. Slepicka.B. Dvorá.A. Macková.V. Hnatowicz, J Mater Sci: Mater Med 17 229-234 (2006).
42. D. J. LI, F. Z. CUI and H. Q. Gu, Appl. Surf. Sci. 137 30 (1999).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔