(3.235.108.188) 您好!臺灣時間:2021/02/27 03:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠宇
研究生(外文):Kuan-Yu Chen
論文名稱:以射頻磁控濺鍍法製備二氧化鈦薄膜之特性分析
論文名稱(外文):Characteristic Analysis of TiO2 Thin Film Prepared by Sputtering
指導教授:魏慶華魏慶華引用關係
指導教授(外文):Ching-Hua Wei
學位類別:碩士
校院名稱:南台科技大學
系所名稱:奈米科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:63
中文關鍵詞:光晶格繞射儀磁控濺鍍法金紅石相光譜儀透明性
相關次數:
  • 被引用被引用:8
  • 點閱點閱:473
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:172
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討以二氧化鈦靶材(TiO2)濺鍍製備薄膜(厚度500nm)於氧化銦錫導電玻璃基板上,並分析薄膜之特性。主要參數為製程溫度,與兩種不同之熱處理方式,分別為真空腔內基材加熱(100~400℃)沉積與不加熱沉積完薄膜後再放進高溫爐進行後熱退火(100~400℃);不同參數之薄膜試片分別於X光晶格繞射儀,場發射掃描式電子顯微鏡,原子力顯微鏡,接觸角量測儀和紫外-可見光光譜儀進行結晶型態,表面形貌與光學特性之分析。
製程溫度與結晶型態之分析為:(1) 基材加熱150℃以下與後熱退火250℃以下皆為非結晶相,(2)基材加熱150~300℃之間與後熱退火250~400℃之間皆為銳鈦礦晶相,(3)基材加熱350~400℃之間發生銳鈦礦相轉換為金紅石相,而400℃以上則完全為金紅石相。製程溫度與結晶粒徑大小之分析顯示:在基材加熱300℃,可形成最大結晶粒徑,300℃以上因為結晶轉相,反使結晶粒徑變小;表面粗糙度會隨著製程溫度升高而增加,兩種熱處理方式皆顯示,於300℃所製備之銳鈦礦相薄膜粗糙度最大;而於350oC~400℃為相轉變過程,對後熱退火之薄膜粗糙度變化不大,對基材加熱薄膜在完全轉為金紅石相後粒徑變小,粗糙度反而降低。
薄膜之光吸收範圍與結晶型態及結晶粒徑有關,製程溫度的提昇,結晶粒徑變大,其電子能帶相對減小,造成可吸收光線之頻率變小,波長會有紅移之趨勢,此外金紅石相之能帶較銳鈦礦相小,故金紅石相之吸收波長範圍較銳鈦礦相亦有紅移之趨勢,這些都與紫外-可見光光譜儀之分析結果吻合;各種溫度下所製備出之薄膜在大於400nm波長範圍皆有良好之穿透率,平均穿透率超過70%以上,表示薄膜具有良好的透明性;此外,薄膜之表面親水性質受到結晶型態與表面粗糙度所影響,在銳鈦礦相時,會有良好之親水性,但在相同溫度條件下不同熱處理方式,薄膜粗糙度較大者,親水性較差。
This research studied the titanium dioxide (TiO2) thin film, at thickness of 500nm, on ITO glass substrate, prepared by radio frequency magnetron sputtering from TiO2 target and analyzes the optical characteristics and surface morphology. The thin films were prepared at different temperatures and at two kinds of heat treatment process: (1) deposited in vacuum condition with substrate heating at temperature ranging from 100 to 400oC, (2) deposited in vacuum condition at RT and then post annealed at 100oC to 400oC in atmospheric furnace. The crystallization state of films was studied by X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM). The surface morphology was evaluated with Atomic Force Microscopy (AFM), and the optical characteristics were analyzed by UV-VIS spectrometer and contact angle measurement.
Analysis of the temperature and crystallization of different films were summarized as following: (1) at substrate heating below 150oC or post annealed below 250oC were amorphous. (2) at substrate heating at 150 to 300oC or post annealed at 250oC to 400oC were anatase crystalline. (3) at substrate heating from 350 to 400oC was at transitional state from anatase to rutile, above 400oC was rutile crystalline. According to the results of the SEM and XRD, the largest grain size in the film was observed on substrate heating condition at 300oC, grain size decreased above 300oC due to the transformation of crystal phase. According to the results of the AFM, the surface roughness increases with prepared temperature. In the two heat treatment process, the roughest surface occurred on thin films in anatase crystalline at 300oC. From 350 to 400oC, the roughness of films prepared by post annealing did not change too much, however for those prepared by substrate heating, the roughness decreases because of crystalline transformation.
The absorptive performance was related with crystalline phase and grain size. As prepared temperature increases, the grain size increases and the band gap decreases that causes the films to absorb smaller frequency light. In the other words, the absorptive ability is red shifted to larger light wavelength. Besides, rutile phase has smaller band gap the anatase phase that resulted in red shift of absorption too. All these trends were confirmed by examining the transparency and absorptive performance of thin films between 200 nm ~600 nm on UV-VIS spectrometer. All films have good transparency about 70% above 400 nm. The hydrauphilic ability was related with crystalline phase and roughness. Better hydrauphilic ability was observed on anatase surface, however at the same temperature of different heat treatment process, the rougher surface possessed the poor hydrauphilic ability.
第一章 序論
1-1 前言..............................................................................................................1
1-2 研究背景與目的..........................................................................................2
1-3 研究項目......................................................................................................3
第二章 濺鍍法與光觸媒之基礎理論
2-1 電漿..............................................................................................................4
2-2 濺鍍法..........................................................................................................5
2-2-1 反應式濺鍍.......................................................................................6
2-2-2 射頻磁控濺鍍...................................................................................7
2-2-3 脈衝磁控濺鍍...................................................................................7
2-3 薄膜沉積現象..............................................................................................8
2-3-1 薄膜沉積過程...................................................................................8
2-3-2 薄膜成長型態.................................................................................12
2-3-3 薄膜微觀結構.................................................................................13
2-4 二氧化鈦光觸媒之基本特性....................................................................15
2-4-1 光觸媒特性.....................................................................................15
2-4-2 二氧化鈦基本性質.........................................................................18
第三章 實驗設備與方法
3-1 濺鍍機與靶材............................................................................................21
3-1-1 濺鍍機介紹.....................................................................................21
3-2 量測機台介紹............................................................................................24
3-2-1 微細表面型態輪廓儀(α-step)........................................................24
3-2-2 掃描式電子顯微鏡 (SEM)............................................................25
3-2-3 原子力顯微鏡(AFM)......................................................................26
3-2-4 X-ray繞射儀 (XRD).......................................................................27
3-2-5 紫外光-可見光光譜儀(UV-VIS Spectrophotometer)....................28
3-2-6 接觸角量測儀(Contact angle) .......................................................29
3-3 製備二氧化鈦薄膜之參數及步驟............................................................30
3-3-1 製備二氧化鈦薄膜之參數設定.....................................................30
3-3-2 濺鍍二氧化鈦薄膜之步驟.............................................................31
3-4 二氧化鈦薄膜的製備................................................................................33
3-4-1 基材加熱.........................................................................................33
3-4-2 後熱退火.........................................................................................33
第四章 結果與討論
4-1 沉積速率分析............................................................................................34
4-2 結構分析....................................................................................................35
4-2-1 X光薄膜繞射儀分析......................................................................35
4-2-2 掃瞄式電子顯微鏡分析.................................................................39
4-2-3 原子力顯微鏡分析.........................................................................44
4-3 薄膜光學性質及表面親水性分析............................................................45
4-3-1 紫外/可見光光譜儀分析................................................................45
4-3-2 能帶分析...……………..................................................................49
4-3-3 表面親水性質量測.........................................................................52
第五章 結論與未來工作
5-1 薄膜結構與製程熱處理之關係................................................................55
5-2 薄膜光學性質及表面親水性與製程熱處理之關係................................56
5-3 未來工作....................................................................................................56

參考文獻...................................................................................................................58
作者簡介...................................................................................................................62
[1]Fujishima Akira, Honda K., “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, Vol. 238, pp. 37~38, 1972.
[2]B. O’Regan, M. Gratzel, “A low, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films.”, Nature, Vol. 353 pp. 737~739, 1991.
[3]石忠民,“以液相沉積法生長氧化鈦薄膜及應用”,碩士論文,國立中山大學電機工程學系研究所,高雄,民國93年。
[4]Hyeok Choi, Elias Stathatos, “Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol–gel method modified with nonionic surfactants.”, Thin Solid Films, Vol. 510, pp. 107~114, 2006.
[5]李苑綾,“奈米級二氧化鈦光催化劑之製備與應用”,碩士論文,國立東華大學化學研究所,花蓮,民國94年。
[6]葉世墉,“二氧化鈦的合成與光催化性質的研究”,碩士論文,國立中央大學化學工程與材料工程研究所,桃園,民國94年。
[7]黃相舜,“電漿化學氣相沉積二氧化鈦薄膜之特性研究”,碩士論文,國立成功大學材料科學及工程學系,台南,民國89年。
[8]D. Pamu, M. Ghanashyam Krishna, “Ambient temperature growth of nanocrystalline titanium dioxide thin films.”, Solid State Communications, Vol. 135, pp. 7~10, 2005.
[9]Song-Zhe Chen, Peng-Yi Zhang, “Investigation of nitrogen doped TiO2 photocatalytic films prepared by reactive magnetron sputtering.”, Catalysis Communications, Vol. 5, pp. 677~680, 2004.
[10]Guang-rui Gu, Zhi He, “Study of the deposition parameters and Fe-dopant effect in the photocatalytic activity of TiO2 films prepared by dc reactive magnetron sputtering.”, Vacuum, Vol. 78, pp. 37~46, 2005.
[11]Guang-rui Gu, Zhi He, “Conductivity of nanometer TiO2 thin films by magnetron sputtering.”, Vacuum, Vol. 70, pp. 17~20, 2003.
[12]S. Ohno, N. Takasawa, “Photocatalytic TiO2 films deposited by reactive magnetron sputtering with unipolar pulsing and plasma emission control systems.”, Thin Solid Films, Vol. 496, pp. 126~130, 2006.
[13]Masayuki Kamei, Takamasa Ishigaki, “Crystallized TiO2 film growth on unheated substrates by pulse-powered magnetron sputtering.”, Thin Solid Films, Vol. 515, pp. 627~630, 2006.
[14]Diana Mardare, G.I. Rusu, “Structural and electrical properties of TiO2 RF sputtered thin films.”, Materials Science and Engineering, Vol. B75, pp. 68~71, 2000.
[15]S.K. Zheng, G. Xiang, “Photocatalytic activity studies of TiO2 thin films prepared by r.f. magnetron reactive sputtering.”, Vacuum, Vol. 72, pp. 79~84, 2004.
[16]Sea-Fue Wang, Yung-Fu Hsu, “Microstructural evolution and optical properties of doped TiO2 films prepared by RF magnetron sputtering.”, Ceramics International, Vol. 32, pp. 121~125, 2006.
[17]Youl-Moon Sung, Hee-Je Kim, “Sputter deposition and surface treatment of TiO2 films for dye-sensitized solar cells using reactive RF plasma.”, Thin Solid Films, Vol. 515, pp.4996~4999, 2007.
[18]L. Sirghi, Y. Hatanaka, “Photocatalytic chemisorption of water on titanium dioxide thin films obtained by radio frequency magnetron deposition.”, Applied Surface Science, Vol. 244, pp.408~411, 2005.
[19]蕭宏,“半導體製程技術導論”,台灣培生教育出版股份有限公司,224〜464頁,民國90年。
[20]張勁燕,半導體製程設備,第二版,五南圖書出版股份有限公司,359〜394頁,民國93年。
[21]莊達人, VLSI製造技術, 高立圖書股份有限公司, 147〜155頁,民國84年。
[22]白木靖寬, 吉田貞史, 薄膜工程學, 全華科技圖書股份有限公司,1-33〜1-39頁,民國95年。
[23]J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol., Vol. 11, pp. 666~670, 1974.
[24]H.T.G. Hentzell, C.R.M. Grovenor, “Grain structure variation with temperature for evaporated metal films”, J. Vac. Sci. Technol.A, Vol. 2, pp. 218~219, 1984.
[25]P.B. Barna, M. Adamik, “Fundamental structure forming phenomena of polycrystalline films and the structure zone models”, Thin Solid Films, Vol. 317, pp. 27~33, 1998.
[26]高濂、鄭珊、張青紅,“奈米光觸媒”,五南圖書出版公司,59頁,2004年。
[27]羅志緯,“於鈦矽基材上成長含氮二氧化鈦薄膜及其作為光觸媒材料及性質研究”,碩士論文,國立台灣科技大學化學工程學研究所,臺北,民國95年。
[28]許明琮,“射頻磁控濺鍍法製備TiO2及TiO2-xNx光觸媒薄膜之研究”,碩士論文,國立雲林科技大學工業化學與災害防治研究所,雲林,民國91年。
[29]陳君閣,“以濺鍍法製備二氧化鈦薄膜應用於染料敏化太陽能電池之研究”,碩士論文,南台科技大學機械工程研究所,台南,民國96年。
[30]陳俊元,“磁控濺鍍氧化亞銅奈米薄膜之光電特性研究”, 碩士論文,崑山科技大學電子工程學系,台南,民國93年
[31]郭正鏞,“應用於染料敏化太陽能電池之二氧化鈦薄膜與粉末製程及其特性”, 碩士論文,南台科技大學機械工程學系,台南,民國92年
[32]L. Miaoa, P. Jinb, K. Kanekoc, “Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering” , Applied Surface Science, Vol. 212–213, pp. 255~263, 2003.
[33]邱忠彥,“利用脈衝式雷射蒸鍍系統製備碳摻雜二氧化鈦光觸媒薄膜”, 碩士論文,國立東華大學材料科學與工程學系,花蓮,民國95年
[34]黃群勝,“原子層沉積二氧化鈦薄膜之結構與光響應特性研究” , 碩士論文,南台科技大學電機工程學系,台南,民國95年
[35]Cheol Ho Heo, Soon-Bo Lee, “Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics.”, Thin Solid Films, Vol. 475, pp.183~188, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔