(3.238.186.43) 您好!臺灣時間:2021/02/26 12:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:巫致瑋
研究生(外文):C. W. Wu
論文名稱:反應性磁控濺鍍沉積氧化銅薄膜光電特性之研究
論文名稱(外文):Optical-electrical properties of copper oxide films deposited by reactive magnetron sputtering
指導教授:江明政江明政引用關係
指導教授(外文):M. J. chiang
學位類別:碩士
校院名稱:南台科技大學
系所名稱:奈米科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:76
中文關鍵詞:氧化銅光電特性直流磁控濺鍍微結構
外文關鍵詞:copper oxideDC magnetron sputteringMicrostructureElectrical properties
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1942
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:185
  • 收藏至我的研究室書目清單書目收藏:0
氧化銅(Copper oxide;CuO)為P型半導體材料,其光學能隙為1.2-1.9eV,目前已經被應用在光電元件和光熱效應的研究上。因氧化銅具有在可見光區吸收的特性,若能將它應用在太陽能電池上,預期將提升對太陽能電池技術發展的經濟效益。因此期望藉由改變製程參數,研究其對氧化銅薄膜之特性的影響。
本研究以反應式直流磁控濺鍍系統,使用銅金屬靶通入不同氧氣流量比例,在氬氣與氧氣的混合氣氛下進行直流反應性濺鍍沉積氧化銅薄膜在玻璃基板上,以及改變濺鍍薄膜時的基板溫度與濺鍍功率,藉以得到不同性質之氧化銅薄膜。再以X光繞射分析儀(XRD)與場發射掃描式電子顯微鏡(FE-SEM)進行薄膜結構及表面型態分析,並以場發射掃描式電子顯微鏡(FE-SEM)觀察表面形貌變化,在光電特性方面則以紫外光-可見光光譜儀(UV-Vis)量測氧化銅薄膜之吸收波段範圍,藉以計算氧化銅薄膜的能隙數值,再以霍爾量測(Hall measurement)分析薄膜之電性。
由X光繞射儀及場發射掃描式電子顯微鏡量測結果顯示,在功率為150 W、壓力為3.3 Pa、氬氣流量和氧氣流量分別為15 sccm和4.5 sccm,在基板溫度為200℃之下,能沉積出結晶性良好且優選方向為(111)的氧化銅薄膜。在不同的基板溫度RT.~300℃下,所沉積之氧化銅薄膜,其晶粒尺寸大小約為50-200 nm。在改變濺鍍功率100-200W,也能沉積出優選方向為 (111)的氧化銅薄膜。在電性方面,在基板溫度為200℃與300℃下,其載子濃度與移動率均約為1016cm-3與0.7cm2/V•S。在基板溫度200℃,功率100W時,有較高的載子移動率50cm2/V•S。在室溫時,其電阻率最低為400Ω-cm。在光學特性方面,改變基板溫度和氧流量,其薄膜吸收邊限皆有紅移的現象,光學能隙值範圍約在1.6-1.95eV。在氮氣下300℃退火後,其薄膜的載子濃度上升到1017cm-3,移動率則維持0.8 cm2/V•S,電阻率則降低至60Ω-cm。退火後,對於薄膜之吸收邊限則維持在1.6-1.95eV。在電流-電壓特性分析方面,使用兩種由p-CuO/n-ITO以及p-CuO/i-ZnO/n-ITO的材料組成之元件,所量測之順偏啟動電壓約在0.1-0.5V,且皆呈現二極體特性。
Copper oxide coating is known to show p-type conductivity and as a consequence, it is attracting increasing attention. CuO is a p-type semiconductor with a band gap of 1.2-1.9 eV and a monoclinic structure. The development of p-type semiconductor is one of the key technologies for p-n junction based devices, such as diodes, transistors and light-emitting diodes.
Nanocrystalline copper oxide films have been synthesized on glass by dc magnetron sputtering. The effects of oxygen flow rate, deposition temperature and sputtering power on the microstructure of nanocrystalline copper oxide films were investigated by X-ray diffraction and FE-SEM. X-ray diffraction analysis shows that a peak of CuO (111) was observed at the deposition condition of DC power 150W, pressure 3.3Pa, substrate temperature 200℃, Argon flow rate 15 sccm and O2 flow rate 4.5sccm. SEM pictures show that copper oxide films exhibit nanosize grains. X-ray diffraction patterns of CuO films deposited at RT.~300℃ show that only (111) plane is obtained. The SEM pictures show that the grain size increases with the deposition temperatures increases. The grain size of CuO thin films are around 50-200nm. The hole concentration and mobility at 200℃ and 300℃ were both 1016 cm-3 and 0.8 cm2/V•S observed by Hall-effect measurement, respectively. The resistivity of CuO film was around 400Ω-cm at room temperature. The higher mobility of CuO at 100W was 50cm2/V•S. The absorption wavelength of CuO thin films showed “red shift” with changed substrate temperatures and oxygen flow rate. The energy band gap of CuO thin films were 1.6-1.95.
The hole concentration of CuO thin films was increased to 1017cm-3 after annealing in a nitrogen atmosphere. The resistivity of CuO thin films annealed at 300℃ decreased to 60Ω-cm. The energy band gap of CuO thin films annealed at 300℃ were no changed. In the I-V measurement analysis, two kinds of herterostructures, p-CuO/n-ITO and p-CuO/i-ZnO/n-ITO were used. The turn on voltage of two herterostructures were around 0.1~0.5V. The I-V measurement of two herterostructures showed a diode characteristic.
目  錄
中文摘要…………………………………….…................................................................ii
英文摘要………………………………….…………….………………………….…….iii 誌謝………………………………………………………………….……………….….iv目錄…………………………………………..…………………………..……….……….v圖目錄..……………...…………………………………………………………….....…viii
第一章 序論…...………………………………………………………………………...1
1-1前言..…………..……..........................................................................................1
1-2研究目的與動機.....…………….........................................................................2
第二章 文獻回顧.....………………………………………………………….……........5
2-1 氧化銅的介紹與應用...…………….................................................................5
2-2 物理氣相沉積….....………...............................................................................5
2-3 濺鍍法...........………………………................................................……..…...7
2-4 反應式磁控濺鍍..…….……...........................................................................10
2-5 薄膜形成機制..…...….…................................................................................14
2-6 薄膜微觀結構…......….…...............................................................................15
第三章 實驗步驟…..……...…………………………………………………………..19
3-1 實驗流程規劃………...………..…….............................................................19
3-2 基板清洗.………………………….....................................................…..…..20 3-3 氧化銅薄膜製備………..……………………………………………………23 3-4 薄膜量測與分析…...……..………...………………………………………..23
第四章 結果與討論…………………………..............................................................29 4-1氧流量對薄膜特性之影響.……………...…………………………………....29
4-2基板溫度對薄膜特性之影響..........…………...……………………….....…..37
4-3濺鍍功率對薄膜特性之影響………………...……………………….......…..45
4-4退火對薄膜特性之影響….………………...……..…………………....…......53
4-5電流-電壓特性……………………………………...……..……………....….55
第五章 結論…………………………..........................................................................68
參考文獻…………………………....................................................................................69
Publication list…………………………………………………………………………...75

圖 目 錄
Fig.2-1氧化銅的晶體結構………………………………………………………….……6
Fig.2-2 (a) glow discharge (b) electric 7potential distribution between cathode and anod...9
Fig.2-3磁控濺鍍示意圖……………………….………………………………………..11
Fig.2-4 Interaction of ions with target surface….………………………………………..13
Fig.2-5薄膜形成機制示意圖(a)成核 (b)晶粒成長 (c)晶粒聚結 (d) 縫隙填補 (e)薄
膜厚度成長.........................................................................………………….....15
Fig.2-6薄膜微觀結構的各種區域模式…………………………………………...……18
Fig.3-1濺鍍系統示意圖…………………………………………………………...…....21
Fig.3-2膜厚量測示意圖………………………………………….……………………..24
Fig.3-3 X-Ray繞射示意圖…..…………………………………..………………………26
Fig.3-4霍爾效應之示意圖…….…..…………………………..………………………..27
Fig.4-1不同氧流量對氧化銅薄膜沉積速率之影響………………......……………….30
Fig.4-2不同氧氣流量對氧化銅薄膜微結構之影響,(a)3sccm、(b)3.5sccm、(c)4sccm、
(d)4.5sccm、(e)5sccm…...……. ………………………………………………..31
Fig.4-3氧氣流量對銅氧化物薄膜表面型態之影響,(a)3sccm、(b)3.5sccm、(c)4sccm、
(d)4.5sccm、(e)5sccm..….……... ………………………………………………33
Fig.4-4氧流量變化對氧化銅薄膜載子移動率與濃度之影響…………….......………34
Fig.4-5氧流量變化對氧化銅薄膜電阻率之影響……. ……………………………….35
Fig.4-6氧流量對氧化銅薄膜吸收性之影響…………. ……………………….…...….37
Fig.4-7不同基板溫度分別對沉積速率之影響….…...….……. ………………………39
Fig.4-8不同基板溫度對氧化銅薄膜微結構影響,(a)RT、(b)100℃、(c)200℃、
(d)300℃……..…………………………………………………..……………….40
Fig.4-9基板溫度對氧化銅薄膜表面型態之影響,(a)RT.、(b)100℃、(c)200℃、
(d)300℃……..…………………………………………………………………...41
Fig.4-10基板溫度對氧化銅薄膜載子移動率與濃度之影響…………………..……...43
Fig.4-11基板溫度對氧化銅薄膜電阻率之影響…………... ………………………….44
Fig.4-12基板溫度對氧化銅薄膜吸收性之影響…………………………………...…..45
Fig.4-13改變濺鍍功率對氧化銅薄膜沉積速率之影響………………...…..…………47
Fig.4-14不同濺鍍功率對氧化銅薄膜微結構影響。(a)100W、(b)150W、(c)200W、
(d)250W、(d)300W…………….. ……...…. ……...…. ……...…. ……...…..…48
Fig.4-15濺鍍功率對銅氧化物薄膜表面型態之影響,(a)100W、(b)150W、(c)200W、
(d)250W、(e)300W……………………...…. ……...…. ……...…. ……...…. .49
Fig.4-16濺鍍功率對氧化銅薄膜之載子移動率與濃度之影響……………………….51
Fig.4-17濺鍍功率對氧化銅薄膜電阻率之影響………...…………...…. ……...……..52
Fig.4-18濺鍍功率對氧化銅薄膜吸收性之影響………...………...…. ………...….….54
Fig.4-19退火溫度對氧化銅薄膜結構之影響,(a)150℃、(b)200℃、(c)250℃、
(d)300℃、(d)350℃………..……... ……...…. ……...…. ……...…. ……...…. 56
Fig.4-20不同基板溫度退火300℃後對氧化銅薄膜結構之影響,(a)R.T.、(b)100℃、
(c)200℃、(d)300℃…………………...…. ……...…. ……...…. ……...…. ….57
Fig.4-21退火溫度對氧化銅薄膜表面型態之影,(a)150℃、(b)200℃、(c)250℃、
(d)300℃、(e)350℃…….....…........ ……...…. ……...…. ……...…. ……...…. 58
Fig.4-22不同基板溫度退火300℃後對氧化銅薄膜表面型態之影響,(a)RT.、
(b)100℃、(c)200℃、(d)300℃………………...…. ……...…. ……...…. ……...59
Fig.4-23退火溫度對氧化銅薄膜之載子移動率與濃度之影響………………...……..61
Fig.4-24退火溫度對氧化銅薄膜之電阻率之影響………...…. ……...…. ……...…. ..62
Fig.4-25在300℃退火後對氧化銅薄膜之載子移動率與濃度之影響………………..63
Fig.4-26在300℃退火後對氧化銅薄膜電阻率之影響………. ………....…. …….......64
Fig.4-27退火溫度對氧化銅薄膜吸收性之影響……………………...…. ……………65
Fig.4-28在300℃退火後對氧化銅薄膜吸收性之影響………………………………..66
Fig.4-29 (a) p-CuO/n-ITO異質接面元件結構示意圖、(b)p-CuO/n-ITO 異質接面I-V
之特性曲線。……………………………………………………………...….68
Fig.4-29 (a) p-CuO/n-ITO異質接面元件結構示意圖、(b)p-CuO/n-ITO 異質接面之
I-V特性曲線。…………………………………………………………...….69
Fig.4-29 (a)p-CuO/i-ZnO/n-ITO 異質接面之I-V特性曲線。………………….....….70
[1]G. Papadimitropoulos, N. Vourdas, V. Em. Vamvakas and D. Davazoglou, “Optical and structural properties of copper oxide thin films grown by oxidation of metal layers” Thin Solid Films, 515 (2006) 2428-2432.
[2]Y. S. Chaudhary, A. Agrawal, R.Shrivastav,V. R. Satsangi and S. Dass, “A study on the photoelectrochemical properties of copper oxide thin films,” Int. J. Hydrogen Energy, 29 (2004) 131-134.
[3]H. Derin, K. Kantarli, “Optical characterization of thin thermal oxide films on copper by ellipsometry”, Appl. Phys. A, 75 (2002) 391
[4]T. Ito, T. Kawashima, H. Yamaguchi, T. Masumi and S. Adachi, “Optical Properties of Cu2O Sutdied by Spectroscopic Ellipsometry”, J. Phys. Soc. Jpa., Vol.67, 6 (1998) 2125
[5]E. M. Alkoy, P. J. Kelly, ‘‘The structure and properties of copper oxide and copper aluminium oxide coatings prepared by plused magnetron sputtering of powder targets’’, Vacuum 79 (2005) 221-230.
[6]B. Balamurugan, B. R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation”, Thin Solid Films 396 (2001) 90-96.
[7]M. T. S. Nair, L. Guerrero, O. L. Arenas, P. K. Nair, “Chemically deposited copper oxide thin films: structural, optical and electrical characteristics”, Appl. Surf. Sci. 150 (1999) 143-151.
[8]N. Serin, T. Serin S. Horzum and Y.Celik,“Annealing effects on the properties of copper oxide thin films prepared by chemical deposition” Semicond. Sci.Technol., 20 (2005) 398-401.
[9]M. Schurr, M. Seidl, A. Brugger and H.Voit “Copper-oxide thin films prepared from Langmuir-Blodgett films” Thin SolidFilms, 342 (1999) 266-269.
[10]L. Armelao, D. Barreac, M. Bertapelle, G.Bottaro, C. Sada and E. Tondello “A sol-gel approach to nanophasic copper oxide thin films” Thin Solid Films, 442 (2003) 48-52.
[11]S. B. Ogale, P. G. Bilurkar, N. Mate, N.Parikh and B. Patnaik, “Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation” J. Appl. Phys., 72 (1992) 3765-3769.
[12]Z. H. Gan, G. Q. Yu, B. K. Tay, C. M. Tan,Z. W. Zhao and Y. Q. Fu, “Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc”J. Phys. D: Appl. Phys., 37 (2004) 81-85.
[13]A. Ogwu, E. Bouquerel, O. Ademosu, S.Moh, E Crossan and F. Placido, “The influence of rf power and oxygen flow rate during deposition on the optical transmittance of copper oxide thin film prepared by reactive magnetron sputtering” J. Phys. D: Appl. Phys., 38 (2005) 266-271.
[14]H. S. Potdar, N. Pavaskar, A. Mitra and A. P. B. Sinha, “Solar Selective Copper-Black Layers by an Anodic Oxidation Process”, Sol. Energy Mater., 4 (1981) 291.
[15]M. T. S. Nair, L. Guerrero, O. L. Arenas P. K. Nair, “Chemically Deposited Copper Oxide Thin Film: Structural, Optical and Electrical Characteristics”, Thin solid films, 167 (1988) 309.
[16]Teresa D. Golden, Mark G. Shumsky, Yanchun Zhou, Rachel A. VanderWerf, Robert A. Van Leeuwen, and J. A. Switzer, “Electrochemical Deposition of Copper (I) Oxide Films” Chem. Mater. , 8 (1996) 2499.
[17]P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, “Cu2O: Electrodeposition and Characterization”, Chem. Mater., 11 (1999) 3512.
[18]J. A. Switzer, H. M. Kothari, and E. W. Bohannan, “Thermodynamic to Kinetic Transition in Epitaxial Electrodeposition”, J. Phys. Chem. B., 106 (2002) 40.
[19]S. Ghosh, D. K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya, W. Assmann, “Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization”, Vacuum 57 (2000) 377-385.
[20]A.Y. Oral, E. Mensur, M. H. Aslan,E Basaran, “The preparation of copper(Ⅱ) oxide thin films and the study of their microstructures and optical properties“, Mater. Chem. Phys. 83 (2004) 140-144.
[21] W.Y. Ching, Y. N. Xu and K.W. Wong, “Ground-state and optical properties of Cu2O and CuO crystals”, Phys. Rev. B 40 (1989) 7685.
[22]. L. Davis, “Properties of Transparent Conducting Oxides Deposited at Room Temperature”, Thin Solid Films, 236 (1993) 1
[23]H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent Thin Films”, Institute of Physics Publishing, Philadelphia, (1995) 22

[24]K. N. Tu, J. W. Mayer and L. C. Feldman, “Electronic Thin Film Science”, Macmillan Publishing Company, New York, (1992)
[25]高正雄, “ 超LSI 時代- 電漿化學”, 復漢出版社, 台南市, (1999) 1
[26]D. M. Mattox, “Particle bombardment effects on thin-film deposition: A review”, J. Vac. Sci. Technol. A7 (1989) 1105.
[27]B. Chapman, "Glow Discharge Processes ", John Wiley & Sons, Inc., New York, (1980)
[28]S. M. Rossnagel et al., "Handbook of Plasmas Processing Technology ", Noyes Publications, Park Ridge, New Jersey, U.S.A, (1982)
[29]J. A. Thornton, "Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings", J. Vac. Sci. Technol., 11 (1974) 666-670.
[30]H. T. G. Hentzell, C. R. M. Grovenor, and D. A. Smith, "Grain Structure Variation with Temperature for Evaporated Metal Films", J. Vac. Sci. Technol., A2, (1984) 218-219
[31]汪建民 主編, “材料分析”,中國材料科學學會, (1998) 137
[32]P. B. Barna, and M. Adamik, "Fundamental Structure Forming Phenomena of Polycrystalline Films and The Structure Zone Models", Thin Solid Films, 317 (1998) 27-33
[33]A. Yamamoto, Y. Abe, M. Kawamura, K. Sasaki, “Effects of oxygen gettering and target mode change in the formation process of reactively RF sputtered WOx thin films”, Vacuum 66 (2002) 269-273
[34]J.F. Pierson, A. Thobor-Keck, A. Billard, “Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering”, Appl. Surf. Sci. 210 (2003) 361-362.
[35]M. O. Aboelfotoh, “Preferred Orientations in MgO Films Deposited on Amorphous Substrates”, Appl. Phys. Lett., 24 (1974) 347-349.
[36]A. Thobor, J. F. Pierson, “Properties and air annealing of paramelaconite thin films”, Mater. Lett. 57 (2003) 3676-3680.
[37]J. F. Pierson, E. Duverger, O. banakh, “Experimental and theoretical contributions to the determination of optical properties of synthetic paramelaconite“, J. Sol. Stat. Chem. 180 (2007) 968-973.
[38]J. M. Valtierra, J. R. Ortiz, M. A. Rojas, P. Bosch, J. A. de los Reyes, “Chemical vapor deposition of 6CuO•Cu2O films on fiberglass”, Thin solid films 405 (2002) 23-28.
[39]P. M, Fauchet, C. C. Tsai and K. Tanaka, Eds., in Materials Issues in Microcrystalline Semiconductors (Materials Research Society, Pittsburgh, PA, 1990).
[40]D. K. Smith and C. Mailhiot, Rev. Mod. Phys. 62 (1990) 173.
[41]U. Merkt and C. Sikorski, “Quantum wires and quantum dots on indium antimonide”, Semicond. Sci. Technol. 5 (1990) 182.
[42]M. V. Ramakrishna and R. A. Friesner, “Exciton spectra of semiconductor clusters”, Phys. Rev. Lett. 67 (1991) 629.
[43]V. Fiqueiredo, E. Elangovan, G. Goncalves et al, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper” Appl. Surf. Sci. 254 (2008) 3949-3954.
[44]D. K. Zhang, Y. C. Liu, Y. L. Liu, H. Yang, “The electrical properies and the interfaces of Cu2O/ZnO/ITO p-i-n herterojunction”, Physica B 351 (2004) 178-183.
[45]E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Herojunction solar cell with 2% efficiency based on a Cu2O substrate”, Appl. Phys. Lett. 88 (2006) 163502.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔