(3.235.191.87) 您好!臺灣時間:2021/05/13 13:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:邱敏儀
研究生(外文):Main-yee Hiew
論文名稱:PKC在血管平滑肌細胞中扮演的角色
論文名稱(外文):The roles of Protein Kinase C in vascular smooth muscle cells
指導教授:陳泓吉
指導教授(外文):Hong-Chi Chen
學位類別:碩士
校院名稱:慈濟大學
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:38
外文關鍵詞:PKCprotein kinase CVSMCvascular smooth muscle cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:3
Plasminogen activator inhibitor 1 (PAI-1) is the primary physiological inhibitor of both urokinase type and tissue type plasminogen activator (uPA and tPA). During fibrinolysis, tissue plasminogen activator (tPA) converts the inactive plasminogen into plasmin which degrades fibrin. Here, we demonstrated that AngII-induced PAI-1 expression was mediated by PKC theta (PKCθ) in vascular smooth muscle cells (VSMC). Western blotting and reverse transcription-polymerase chain reaction (RT-PCR) showed that AngII-stimulated PAI-1 protein and mRNA expression were both blocked by myristoylated PKCθ pseudosubstrate treatment. Although the inhibition of PKCθ activity had no effects on the AngII-stimulated phosphorylation of mitogen-activated protein kinases (MAPK), it inhibited AngII-induced IκBα phosphorylation. In summary, PKCθ mediated AngII-induced PAI-1 expression, and AngII-induced IκBα phosphorylation. The IκBα phosphorylation can be disturbed as PKCθ activity was blocked by PKCθ pseudosubstrate.
Contents Page
Abstract……………………………………………………………………………… 1
1. Introduction…………………………………………………………………..…... 2
2. Material and methods………………………………………………….………… 7
2-1 Antibodies
2-2 Pseudosubstrate
2-3 Cell culture
2-4 RNA isolation
2-5 Reverse transcription-polymerase chain reaction (RT-PCR)
2-6 Protein extraction and western blotting
3. Results……………………………………………………………………………. 11
4. Discussion………..………………………………………………………………. 14
5. References…………..…………………………………………………………… 17
6. Table and figures…………..……………………………………………………. 28
1.Ginsburg, D., Zeheb, R., Yang, A.Y., Rafferty, U.M., Andreasen, P.A., Nielsen, L., Dano, K., Lebo, R.V., and Gelehrter, T.D. 1986. cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J Clin Invest 78:1673-1680.
2.Lijnen, H.R., and Collen, D. 1995. Mechanisms of physiological fibrinolysis. Baillieres Clin Haematol 8:277-290.
3.Mondino, A., Resnati, M., and Blasi, F. 1999. Structure and function of the urokinase receptor. Thromb Haemost 82 Suppl 1:19-22.
4.Ploug, M. 2003. Structure-function relationships in the interaction between the urokinase-type plasminogen activator and its receptor. Curr Pharm Des 9:1499-1528.
5.Behrendt, N., Ronne, E., and Dano, K. 1995. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chem Hoppe Seyler 376:269-279.
6.Wagner, O.F., de Vries, C., Hohmann, C., Veerman, H., and Pannekoek, H. 1989. Interaction between plasminogen activator inhibitor type 1 (PAI-1) bound to fibrin and either tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA). Binding of t-PA/PAI-1 complexes to fibrin mediated by both the finger and the kringle-2 domain of t-PA. J Clin Invest 84:647-655.
7.Noorman, F., Braat, E.A., and Rijken, D.C. 1995. Degradation of tissue-type plasminogen activator by human monocyte-derived macrophages is mediated by the mannose receptor and by the low-density lipoprotein receptor-related protein. Blood 86:3421-3427.
8.Casslen, B., Gustavsson, B., Angelin, B., and Gafvels, M. 1998. Degradation of urokinase plasminogen activator (UPA) in endometrial stromal cells requires both the UPA receptor and the low-density lipoprotein receptor-related protein/alpha2-macroglobulin receptor. Mol Hum Reprod 4:585-593.
9.Margaglione, M., Grandone, E., Vecchione, G., Cappucci, G., Giuliani, N., Colaizzo, D., Celentano, E., Panico, S., and Di Minno, G. 1997. Plasminogen activator inhibitor-1 (PAI-1) antigen plasma levels in subjects attending a metabolic ward: relation to polymorphisms of PAI-1 and angiontensin converting enzyme (ACE) genes. Arterioscler Thromb Vasc Biol 17:2082-2087.
10.Alessi, M.C., and Juhan-Vague, I. 2004. Contribution of PAI-1 in cardiovascular pathology. Arch Mal Coeur Vaiss 97:673-678.
11.Haapaniemi, E., Tatlisumak, T., Soinne, L., Syrjala, M., and Kaste, M. 2000. Plasminogen activator inhibitor-1 in patients with ischemic stroke. Acta Neurochir Suppl 76:277-278.
12.Genser, N., Lechleitner, P., Maier, J., Dienstl, F., Artner-Dworzak, E., Puschendorf, B., and Mair, J. 1998. Rebound increase of plasminogen activator inhibitor type I after cessation of thrombolytic treatment for acute myocardial infarction is independent of type of plasminogen activator used. Clin Chem 44:209-214.
13.Hamsten, A., de Faire, U., Walldius, G., Dahlen, G., Szamosi, A., Landou, C., Blomback, M., and Wiman, B. 1987. Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 2:3-9.
14.van Mourik, J.A., Lawrence, D.A., and Loskutoff, D.J. 1984. Purification of an inhibitor of plasminogen activator (antiactivator) synthesized by endothelial cells. J Biol Chem 259:14914-14921.
15.Nordt, T.K., Schneider, D.J., and Sobel, B.E. 1994. Augmentation of the synthesis of plasminogen activator inhibitor type-1 by precursors of insulin. A potential risk factor for vascular disease. Circulation 89:321-330.
16.Samad, F., Yamamoto, K., and Loskutoff, D.J. 1996. Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo. Induction by tumor necrosis factor-alpha and lipopolysaccharide. J Clin Invest 97:37-46.
17.Lau, H.K. 1999. Regulation of proteolytic enzymes and inhibitors in two smooth muscle cell phenotypes. Cardiovasc Res 43:1049-1059.
18.Sato, Y., Tsuboi, R., Lyons, R., Moses, H., and Rifkin, D.B. 1990. Characterization of the activation of latent TGF-beta by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system. J Cell Biol 111:757-763.
19.Brown, N.J., Kim, K.S., Chen, Y.Q., Blevins, L.S., Nadeau, J.H., Meranze, S.G., and Vaughan, D.E. 2000. Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production. J Clin Endocrinol Metab 85:336-344.
20.Cockell, K.A., Ren, S., Sun, J., Angel, A., and Shen, G.X. 1995. Effect of thrombin on release of plasminogen activator inhibitor-1 from cultured primate arterial smooth muscle cells. Thromb Res 77:119-131.
21.Dichtl, W., Stiko, A., Eriksson, P., Goncalves, I., Calara, F., Banfi, C., Ares, M.P., Hamsten, A., and Nilsson, J. 1999. Oxidized LDL and lysophosphatidylcholine stimulate plasminogen activator inhibitor-1 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19:3025-3032.
22.Banfi, C., Eriksson, P., Giandomenico, G., Mussoni, L., Sironi, L., Hamsten, A., and Tremoli, E. 2001. Transcriptional regulation of plasminogen activator inhibitor type 1 gene by insulin: insights into the signaling pathway. Diabetes 50:1522-1530.
23.Hou, B., Eren, M., Painter, C.A., Covington, J.W., Dixon, J.D., Schoenhard, J.A., and Vaughan, D.E. 2004. Tumor necrosis factor alpha activates the human plasminogen activator inhibitor-1 gene through a distal nuclear factor kappaB site. J Biol Chem 279:18127-18136.
24.Hamaguchi, E., Takamura, T., Shimizu, A., and Nagai, Y. 2003. Tumor necrosis factor-alpha and troglitazone regulate plasminogen activator inhibitor type 1 production through extracellular signal-regulated kinase- and nuclear factor-kappaB-dependent pathways in cultured human umbilical vein endothelial cells. J Pharmacol Exp Ther 307:987-994.
25.Lau, H.K., and Ho, J. 2002. Regulation of plasminogen activator inhibitor-1 secretion by growth factors in smooth muscle cells. Blood Coagul Fibrinolysis 13:541-549.
26.Whitman, M. 1998. Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev 12:2445-2462.
27.Chen, Y.Q., Sloan-Lancaster, J., Berg, D.T., Richardson, M.A., Grinnell, B., and Tseng-Crank, J. 2001. Differential mechanisms of plasminogen activator inhibitor-1 gene activation by transforming growth factor-beta and tumor necrosis factor-alpha in endothelial cells. Thromb Haemost 86:1563-1572.
28.Chen, Y.Q., Su, M., Walia, R.R., Hao, Q., Covington, J.W., and Vaughan, D.E. 1998. Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells. J Biol Chem 273:8225-8231.
29.Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., and Gauthier, J.M. 1998. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091-3100.
30.Vulin, A.I., and Stanley, F.M. 2004. Oxidative stress activates the plasminogen activator inhibitor type 1 (PAI-1) promoter through an AP-1 response element and cooperates with insulin for additive effects on PAI-1 transcription. J Biol Chem 279:25172-25178.
31.Godeny, M.D., and Sayeski, P.P. 2006. ANG II-induced cell proliferation is dually mediated by c-Src/Yes/Fyn-regulated ERK1/2 activation in the cytoplasm and PKCzeta-controlled ERK1/2 activity within the nucleus. Am J Physiol Cell Physiol 291:C1297-1307.

32.Ruiz-Ortega, M., Lorenzo, O., Ruperez, M., Esteban, V., Suzuki, Y., Mezzano, S., Plaza, J.J., and Egido, J. 2001. Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension 38:1382-1387.
33.Diep, Q.N., Amiri, F., Touyz, R.M., Cohn, J.S., Endemann, D., Neves, M.F., and Schiffrin, E.L. 2002. PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 40:866-871.
34.Xu, J., Carretero, O.A., Lin, C.X., Cavasin, M.A., Shesely, E.G., Yang, J.J., Reudelhuber, T.L., and Yang, X.P. 2007. Role of cardiac overexpression of ANG II in the regulation of cardiac function and remodeling postmyocardial infarction. Am J Physiol Heart Circ Physiol 293:H1900-1907.
35.Naftilan, A.J. 1992. The role of angiotensin II in vascular smooth muscle cell growth. J Cardiovasc Pharmacol 20 Suppl 1:S37-40.
36.Brown, N.J., and Vaughan, D.E. 2000. Prothrombotic effects of angiotensin. Adv Intern Med 45:419-429.
37.Phillips, M.I., and Kagiyama, S. 2002. Angiotensin II as a pro-inflammatory mediator. Curr Opin Investig Drugs 3:569-577.
38.Paradis, P., Dali-Youcef, N., Paradis, F.W., Thibault, G., and Nemer, M. 2000. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A 97:931-936.
39.Kintsurashvili, E., Duka, I., Gavras, I., Johns, C., Farmakiotis, D., and Gavras, H. 2001. Effects of ANG II on bradykinin receptor gene expression in cardiomyocytes and vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 281:H1778-1783.
40.Griendling, K.K., Tsuda, T., Berk, B.C., and Alexander, R.W. 1989. Angiotensin II stimulation of vascular smooth muscle cells. Secondary signalling mechanisms. Am J Hypertens 2:659-665.
41.Greco, S., Muscella, A., Elia, M.G., Salvatore, P., Storelli, C., and Marsigliante, S. 2002. Activation of angiotensin II type I receptor promotes protein kinase C translocation and cell proliferation in human cultured breast epithelial cells. J Endocrinol 174:205-214.
42.Liao, D.F., Monia, B., Dean, N., and Berk, B.C. 1997. Protein kinase C-zeta mediates angiotensin II activation of ERK1/2 in vascular smooth muscle cells. J Biol Chem 272:6146-6150.
43.Baier, G., Telford, D., Giampa, L., Coggeshall, K.M., Baier-Bitterlich, G., Isakov, N., and Altman, A. 1993. Molecular cloning and characterization of PKC theta, a novel member of the protein kinase C (PKC) gene family expressed predominantly in hematopoietic cells. J Biol Chem 268:4997-5004.
44.Chang, J.D., Xu, Y., Raychowdhury, M.K., and Ware, J.A. 1993. Molecular cloning and expression of a cDNA encoding a novel isoenzyme of protein kinase C (nPKC). A new member of the nPKC family expressed in skeletal muscle, megakaryoblastic cells, and platelets. J Biol Chem 268:14208-14214.
45.Osada, S., Mizuno, K., Saido, T.C., Suzuki, K., Kuroki, T., and Ohno, S. 1992. A new member of the protein kinase C family, nPKC theta, predominantly expressed in skeletal muscle. Mol Cell Biol 12:3930-3938.
46.Isakov, N., and Altman, A. 2002. Protein kinase C(theta) in T cell activation. Annu Rev Immunol 20:761-794.
47.Bertolotto, C., Maulon, L., Filippa, N., Baier, G., and Auberger, P. 2000. Protein kinase C theta and epsilon promote T-cell survival by a rsk-dependent phosphorylation and inactivation of BAD. J Biol Chem 275:37246-37250.
48.Coudronniere, N., Villalba, M., Englund, N., and Altman, A. 2000. NF-kappa B activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-theta. Proc Natl Acad Sci U S A 97:3394-3399.
49.Dienz, O., Hehner, S.P., Droge, W., and Schmitz, M.L. 2000. Synergistic activation of NF-kappa B by functional cooperation between vav and PKCtheta in T lymphocytes. J Biol Chem 275:24547-24551.
50.Itani, S.I., Pories, W.J., Macdonald, K.G., and Dohm, G.L. 2001. Increased protein kinase C theta in skeletal muscle of diabetic patients. Metabolism 50:553-557.
51.Li, Y., Soos, T.J., Li, X., Wu, J., Degennaro, M., Sun, X., Littman, D.R., Birnbaum, M.J., and Polakiewicz, R.D. 2004. Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). J Biol Chem 279:45304-45307.
52.Haasch, D., Berg, C., Clampit, J.E., Pederson, T., Frost, L., Kroeger, P., and Rondinone, C.M. 2006. PKCtheta is a key player in the development of insulin resistance. Biochem Biophys Res Commun 343:361-368.
53.Gao, Z., Wang, Z., Zhang, X., Butler, A.A., Zuberi, A., Gawronska-Kozak, B., Lefevre, M., York, D., Ravussin, E., Berthoud, H.R., et al. 2007. Inactivation of PKCtheta leads to increased susceptibility to obesity and dietary insulin resistance in mice. Am J Physiol Endocrinol Metab 292:E84-91.
54.Feener, E.P., Northrup, J.M., Aiello, L.P., and King, G.L. 1995. Angiotensin II induces plasminogen activator inhibitor-1 and -2 expression in vascular endothelial and smooth muscle cells. J Clin Invest 95:1353-1362.
55.Eguchi, S., Dempsey, P.J., Frank, G.D., Motley, E.D., and Inagami, T. 2001. Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK. J Biol Chem 276:7957-7962.
56.Sun, Z., Arendt, C.W., Ellmeier, W., Schaeffer, E.M., Sunshine, M.J., Gandhi, L., Annes, J., Petrzilka, D., Kupfer, A., Schwartzberg, P.L., et al. 2000. PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 404:402-407.
57.Pfeifhofer, C., Kofler, K., Gruber, T., Tabrizi, N.G., Lutz, C., Maly, K., Leitges, M., and Baier, G. 2003. Protein kinase C theta affects Ca2+ mobilization and NFAT cell activation in primary mouse T cells. J Exp Med 197:1525-1535.
58.Anderson, K., Fitzgerald, M., Dupont, M., Wang, T., Paz, N., Dorsch, M., Healy, A., Xu, Y., Ocain, T., Schopf, L., et al. 2006. Mice deficient in PKC theta demonstrate impaired in vivo T cell activation and protection from T cell-mediated inflammatory diseases. Autoimmunity 39:469-478.
59.Itani, S.I., Zhou, Q., Pories, W.J., MacDonald, K.G., and Dohm, G.L. 2000. Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity. Diabetes 49:1353-1358.
60.Bakker, W., Sipkema, P., Stehouwer, C.D., Serne, E.H., Smulders, Y.M., van Hinsbergh, V.W., and Eringa, E.C. 2008. Protein kinase C theta activation induces insulin-mediated constriction of muscle resistance arteries. Diabetes 57:706-713.
61.Takeda, K., Ichiki, T., Tokunou, T., Iino, N., Fujii, S., Kitabatake, A., Shimokawa, H., and Takeshita, A. 2001. Critical role of Rho-kinase and MEK/ERK pathways for angiotensin II-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler Thromb Vasc Biol 21:868-873.
62.Ghaffari-Tabrizi, N., Bauer, B., Villunger, A., Baier-Bitterlich, G., Altman, A., Utermann, G., Uberall, F., and Baier, G. 1999. Protein kinase Ctheta, a selective upstream regulator of JNK/SAPK and IL-2 promoter activation in Jurkat T cells. Eur J Immunol 29:132-142.
63.Li, Y., Hu, J., Vita, R., Sun, B., Tabata, H., and Altman, A. 2004. SPAK kinase is a substrate and target of PKCtheta in T-cell receptor-induced AP-1 activation pathway. EMBO J 23:1112-1122.
64.Martin, P., Duran, A., Minguet, S., Gaspar, M.L., Diaz-Meco, M.T., Rennert, P., Leitges, M., and Moscat, J. 2002. Role of zeta PKC in B-cell signaling and function. EMBO J 21:4049-4057.
65.Gruber, T., Fresser, F., Jenny, M., Uberall, F., Leitges, M., and Baier, G. 2008. PKCtheta cooperates with atypical PKCzeta and PKCiota in NF-kappaB transactivation of T lymphocytes. Mol Immunol 45:117-126.
66.Thanos, D., and Maniatis, T. 1995. NF-kappa B: a lesson in family values. Cell 80:529-532.
67.Baldwin, A.S., Jr. 1996. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649-683.
68.Karin, M., and Delhase, M. 2000. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 12:85-98.
69.Zandi, E., Rothwarf, D.M., Delhase, M., Hayakawa, M., and Karin, M. 1997. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91:243-252.
70.Nemeth, Z.H., Wong, H.R., Odoms, K., Deitch, E.A., Szabo, C., Vizi, E.S., and Hasko, G. 2004. Proteasome inhibitors induce inhibitory kappa B (I kappa B) kinase activation, I kappa B alpha degradation, and nuclear factor kappa B activation in HT-29 cells. Mol Pharmacol 65:342-349.
71.Swiatkowska, M., Szemraj, J., and Cierniewski, C.S. 2005. Induction of PAI-1 expression by tumor necrosis factor alpha in endothelial cells is mediated by its responsive element located in the 4G/5G site. FEBS J 272:5821-5831.
72.Hanna, I.R., Taniyama, Y., Szocs, K., Rocic, P., and Griendling, K.K. 2002. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxid Redox Signal 4:899-914.
73.Rueckschloss, U., Duerrschmidt, N., and Morawietz, H. 2003. NADPH oxidase in endothelial cells: impact on atherosclerosis. Antioxid Redox Signal 5:171-180.
74.Touyz, R.M., Chen, X., Tabet, F., Yao, G., He, G., Quinn, M.T., Pagano, P.J., and Schiffrin, E.L. 2002. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 90:1205-1213.
75.Pagano, P.J., Chanock, S.J., Siwik, D.A., Colucci, W.S., and Clark, J.K. 1998. Angiotensin II induces p67phox mRNA expression and NADPH oxidase superoxide generation in rabbit aortic adventitial fibroblasts. Hypertension 32:331-337.
76.Negoro, H., Soo Shin, W., Hakamada-Taguchi, R., Eguchi, N., Urade, Y., Goto, A., Toyo-Oka, T., Fujita, T., Omata, M., and Uehara, Y. 2002. Endogenous prostaglandin D2 synthesis reduces an increase in plasminogen activator inhibitor-1 following interleukin stimulation in bovine endothelial cells. J Hypertens 20:1347-1354.
77.Floyd, B.N., Leske, D.A., Wren, S.M., Mookadam, M., Fautsch, M.P., and Holmes, J.M. 2005. Differences between rat strains in models of retinopathy of prematurity. Mol Vis 11:524-530.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. PKCδ及ERK1/2訊息傳遞在帶有4977bp斷損突變粒線體DNA的人類細胞易受UV誘發細胞凋亡之調控角色
2. 第一部份:PPARg作用劑15d-PGJ2、ciglitazone、GW251929經由超氧陰離子自由基的產生活化Raf/MEK/ERK的訊息傳遞路徑第二部份:細胞激素IL-4調節LPS所引起IL-6及NO的產生經由抑制ERK、p38MAPK及PKC的訊息傳遞路徑
3. 蛋白激酶C調控alpha7尼古丁乙醯膽鹼受體
4. 蛇毒蛋白triflavin抑制血管平滑肌細胞PKC的轉移作用
5. 大鼠子宮蛻膜形成中PKC活化與MMP-2表現之關係
6. 脂肪酸及T型鈣離子流對於人類冠狀動脈血管收縮與血管平滑肌細胞鉀離子流的影響
7. 敗血症時大鼠心室各分區中蛋白激酶C同功酶角色之探討
8. 蛋白激酶Cα於熱休克前處理對腫瘤壞死因子α誘發肝細胞凋亡之保護作用的角色探討
9. 探討敗血症時蛋白激酶C之變化及其對肝細胞凋亡之調控機轉
10. PKC訊號路徑參與螺旋藻萃取物誘導K562細胞凋亡作用之研究
11. 血管平滑肌細胞型態調節之分子機制:血流剪力調節內皮細胞與平滑肌細胞間交互作用的研究
12. 小蘗鹼調控血管平滑肌細胞傷害後新生與移行的分子機轉
13. Oct-2會使體外培養的主動脈平滑肌細胞之ET-1高度表現
14. 蛋白激酶Cδ於人類細胞受氧化壓迫下之粒線體增生所參與之角色
15. PMC抑制PMA引起的血管平滑肌細胞增生經由抑制proteinkinaseC-alpha的活性
 
系統版面圖檔 系統版面圖檔