跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/10 15:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉璧瑜
研究生(外文):Bi-yu Liu
論文名稱:中大腦動脈阻塞對腦波、睡眠及自主神經功能的影響於WKY與SHR大鼠的差異
論文名稱(外文):Effect of Middle Cerebral Artery Occlusion on Electroencephalogram and Cardiac Autonomic Function in WKY and SHR
指導教授:楊昆達楊昆達引用關係
學位類別:碩士
校院名稱:慈濟大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:中大腦動脈阻塞腦波心率變異性自主神經活性TTC 染色
外文關鍵詞:middle cerebral occlusionMCAOelectroencephalogramheart rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:517
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:1
背景:
腦血管疾病已位居國人十大死因的第二位,會造成個體的死亡和殘疾。中風好
發的位置位於中大腦動脈,它位在腦內威廉氏環附近。中大腦動脈阻塞(MCAO)
與高血壓的個體有密切相關並會造成個體的睡眠障礙甚至造成腦部缺血性中風
的嚴重度。而MCAO 的動物模式在模擬中風之研究已延用多年,也多所探討
MCAO 對腦波、睡眠、自主神經的影響,但學者大多使用麻醉情況下進行生理
功能探討,較少在自由活動下,長時間瞭解這些生理參數的變化。然而自由活動
大鼠具睡醒的頻繁切換,特別對於對於睡眠當中自主神經功能的變化不甚明瞭。
因此本論文的研究主要是瞭解MCAO 前後對自由活動下大鼠的腦波、睡眠和自
主神經的影響,特別是高血壓和正常血壓的差異。
目標:
1. TTC 染色探討Wister-Kyoto rats (WKY) 和spontaneously hypertensive rats
(SHR)在MCAO 後,其腦部受損區域之體積之差異。
2. WKY 和SHR 在MCAO 前後對腦部活性的變化(中風側和健側之比較)。
3. WKY 和SHR 在MCAO 前後對睡眠結構之變化。
4. WKY 和SHR 在MCAO 前後心臟自主神經功能的變化。
方法:
將八週大同年齡的WKY 和SHR 埋置頭電極,之後隨機區挑選做MCAO 和Sham
III
手術,術後每週測一次持續4 週。一個月後,犧牲取腦做切片染色。
結果:
從TTC 染色可以看出中風後SHR 的腦部受損的範圍較中風後WKY 嚴重,相對的
在腦波的部份也可看出SHR 在右側頂葉和右側額葉的腦波功率(TP, delta power,
theta power, alpha power, beta power)較WKY 低。然而中風後的WKY 則較無太大
改變。
在睡眠上,控制組之SHR 本身在睡眠時間較WKY 短,睡眠品質差。但MCAO 對
WKY 和SHR 的睡眠結構並無太大改變。
MCAO 對WKY 和SHR 皆會造成心率變異性的TP, HF, LF 的降低,但是WKY 影
響的是長期的改變,而SHR 在中風後第15 天即會回升至MCAO 前的狀況。但SHR
在MCAO 後LF/HF 其皆明顯比MCAO 前及MCAO 之WKY 低。
結論:
MCAO 造成正常血壓和高血壓的生理影響不一,可能是SHR 體內缺乏血管保護因
子,因此造成其腦部皮質受損的範圍較WKY 大,相對的從腦波也可看出SHR 的受
傷側的腦波活性亦較低。然而MCAO 對自主神經影響的方面,WKY 較嚴重,最主
要是在副交感神經的部份。但SHR 在MCAO 則主要是降低交感神經。
Background:
Stroke now ranks second as leading cause of death which makes death and
long-term disability. The occlusion of the middle cerebral artery (MCAO) which
nears the circle of Willis almost results in a large cerebral infarct in adult rats. With
a close relationship of hypertension, MCAO not only causes sleep disorders but
also affects the severity of ischemic stroke. Being an animal model of stroke
research for many years, MCAO explores the influence on EEG, sleep and
autonomic nerve system. However, most researchers focus on the physiological
under anesthesia than the change of physiological index in free moving rats. It is
still unclear that the change of ANS in free moving rats. Therefore, the aim of this
study is to explore the influence of EEG, sleep, ANS in before and after MCAO,
especially the difference between hypertension and normal blood pressure.
Aims:
1. To study the difference of the capacity of brain before and after MCAO in WKY
and SHR by TTC stain.
2. To study the changes of brain activity before and after MCAO in WKY and SHR.
3. To study the changes of sleep pattern before and after MCAO in WKY and SHR.
4. To study the changes of cardiac autonomic nervous system before and after
MCAO in WKY and SHR.
Methods:
The MCAO was injured focal cerebral ischemia which followed in adult male WKY
and compared with age-matched SHR. Six hours of electroencephalogram (EEG),
electromyogram (EMG) and electrocardiogram (ECG) signals were recorded in
V
rats during daytim. Rats were sacrificed one month after MCA occlusion and
administration of 2,3,5-triphenylterazolium chloride.
Results:
Comparing with WKY, SHR showed an increase in infarct volume following MCAO.
The MCAO effect of EEG at R-Parietal and frontal of SHR showed decrease in
total power (TP), delta power, theta power, alpha power and beta power . However,
WKY were not changes.
As compared to WKY, SHR may have less sleep time, poorer sleep quality in Sham
groups. However, MCAO and Sham groups had similar sleep pattern in sleep time,
stage number and stage duration.
A significant decrease in TP, high-frequency power (HF) and low-frequency power
(LF) of heart rate variability in active waking (AW), quiet sleep (QS), and
paradoxical sleep (PS) stages was found in MCAO group in both SHR and WKY
rats. WKY returned to baseline in the long time. As compared WKY, SHR
decreased LF/HF ratio in AW, QS and PS stages.
Conclusions:
SHR lacks the natural proneness to stroke, but WKY were protected from infarction.
But WKY had decreased and prolonged cardiac parasympathetic tone. SHR had
attenuate cardiac sympathetic tone. In this study, we suggest that the cardiac
autonomic regulation of SHR and WKY were different to stroke, it may be
accommodation circulation in the occlusion. However, comparing with WKY rats,
SHR rats had serious cerebral cortex damage.
致謝…………………………………………………………………………I
中文摘要…………………………………………………………………·II
英文摘要…………………………………………………………………·IV
目錄………………………………………………………………………··VI
背景介紹……………………………………………………………………1
前言…………………………………………………………………………1
腦中風………………………………………………………………………2
腦中風在動物模式的應用…………………………………………………3
腦波…………………………………………………………………………4
腦中風的腦波及睡眠………………………………………………………5
腦中風對自主神經功能的影響……………………………………………6
睡眠生理與神經活性的關聯………………………………………………8
腦中風與高血壓的關係……………………………………………………9
心率變異與心臟自主神經功能…………………………………………·10
研究動機…………………………………………………………………·14
研究目的…………………………………………………………………·15
材料與方法………………………………………………………………·16
實驗動物…………………………………………………………………·16
VII
實驗分組…………………………………………………………………·16
實驗步驟…………………………………………………………………·16
頭電極埋置………………………………………………………………·16
中大腦動脈手術…………………………………………………………·17
2,3,5-triphenyltetrazolium chloride (TTC) 染色……………………··18
訊號收集與分析方式……………………………………………………·18
訊號的收集………………………………………………………………·18
腦波與肌電之頻域分析…………………………………………………·19
心電訊號處理……………………………………………………………·19
心電訊號頻域分析………………………………………………………·20
心率變異性的判讀………………………………………………………·21
睡眠判讀…………………………………………………………………·21
統計分析…………………………………………………………………·22
實驗結果…………………………………………………………………·23
一、TTC 染色探討WKY 和SHR 在MCAO 後其腦部受損區域之體積差
異……………………………………………………………·……···23
二、WKY 和SHR 在MCAO 前後對腦部活性的變化(中風側和健側之比
較) ……………………………………………………………·……·23
三、WKY 和SHR 在MCAO 前後對睡眠結構之變化…………………·……24
VIII
四、WKY 和SHR 在MCAO 前後對心臟自主神經功能的變
化……………………………………………………………………·25
綜合討論…………………………………………………………………·28
腦波………………………………………………………………………·28
睡眠………………………………………………………………………·29
自主神經…………………………………………………………………·30
本論文之檢討……………………………………………………………·32
長期記錄的訊號品質維持………………………………………………·32
對整個24 小時睡眠尚不清楚……………………………………………32
尚未釐清造成高血壓大鼠和正常血壓大鼠中風後現象表現的真正原
因…………………………………………………………………………·32
未來展望…………………………………………………………………·33
結論………………………………………………………………………··34
附表、圖…………………………………………………………………·35
參考文獻…………………………………………………………………·60
參考文獻
Adrian ED (1942) Olfactory reactions in the brain of the hedgehog. J Physiol 100:459-473.
Akopov S, Cohen SN (2003) Preventing stroke: a review of current guidelines. J Am Med Dir Assoc
4:S127-S132.
Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ (1981) Power spectrum analysis of
heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science
213:220-222.
Albert CM, McGovern BA, Newell JB, Ruskin JN (1996) Sex differences in cardiac arrest survivors.
Circulation 93:1170-1176.
Auer RN, Coupland SG, Jason GW, Archer DP, Payne J, Belzberg AJ, Ohtaki M, Tranmer BI (1996)
Postischemic therapy with MK-801 (dizocilpine) in a primate model of transient focal brain
ischemia. Mol Chem Neuropathol 29:193-210.
Barone FC, PriceWJ,White RF,Willette RN, Feuerstein GZ (1992) Genetic hypertension and increased
susceptibility to cerebral ischemia. Neurosci Biobehav Rev 16:219-233.
Barron SA, Rogovski Z, Hemli J (1994) Autonomic consequences of cerebral hemisphere infarction.
Stroke 25:113-116.
Baumann CR, Kilic E, Petit B,Werth E, Hermann DM, Tafti M, Bassetti CL (2006) Sleep EEG changes
after middle cerebral artery infarcts in mice: different effects of striatal and cortical lesions. Sleep
29:1339-1344.
BaustW, Bohnert B (1969) The regulation of heart rate during sleep. Exp Brain Res 7:169-180.
Cao Y, D'Olhaberriague L, Vikingstad EM, Levine SR,Welch KM (1998) Pilot study of functional MRI
to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 29:112-122.
Cechetto DF,Wilson JX, Smith KE,Wolski D, Silver MD, Hachinski VC (1989) Autonomic and
myocardial changes in middle cerebral artery occlusion: stroke models in the rat. Brain Res
502:296-305.
Cheng H, Huang SS, Lin SM, Lin MJ, Chu YC, Chih CL, Tsai MJ, Lin HC, HuangWC, Tsai SK (2005)
The neuroprotective effect of glial cell line-derived neurotrophic factor in fibrin glue against
chronic focal cerebral ischemia in conscious rats. Brain Res 1033:28-33.
Cohen RA, Hasegawa Y, Fisher M (1994) Effects of a novel NMDA receptor antagonist on experimental
stroke quantitatively assessed by spectral EEG and infarct volume. Neurol Res 16:443-448.
Coyle P (1986) Different susceptibilities to cerebral infarction in spontaneously hypertensive (SHR) and
normotensive Sprague-Dawley rats. Stroke 17:520-525.
Faught E (1993) Current role of electroencephalography in cerebral ischemia. Stroke 24:609-613.
Fell J, Klaver P, Elfadil H, Schaller C, Elger CE, Fernandez G (2003) Rhinal-hippocampal theta
coherence during declarative memory formation: interaction with gamma synchronization? Eur J
Neurosci 17:1082-1088.
Fewell JE,Williams BJ, Hill DE (1985) Control of blood pressure during sleep in lambs. Sleep
61
8:254-260.
George CF, Kryger MH (1985) Sleep and control of heart rate. Clin Chest Med 6:595-601.
Giubilei F, Strano S, Lino S, Calcagnini G, Tisei P, Fiorelli M, Ferretti C, Cerutti S, Fieschi C (1998)
Autonomic nervous activity during sleep in middle cerebral artery infarction. Cerebrovasc Dis
8:118-123.
Glader EL, Stegmayr B, Asplund K (2002) Poststroke fatigue: a 2-year follow-up study of stroke patients
in Sweden. Stroke 33:1327-1333.
Hachinski VC, Oppenheimer SM,Wilson JX, Guiraudon C, Cechetto DF (1992) Asymmetry of
sympathetic consequences of experimental stroke. Arch Neurol 49:697-702.
Hom S, Fleegal MA, Egleton RD, Campos CR, Hawkins BT, Davis TP (2007) Comparative changes in
the blood-brain barrier and cerebral infarction of SHR andWKY rats. Am J Physiol Regul Integr
Comp Physiol 292:R1881-1892.
Hon EH, Lee ST (1963) Electronic Evaluation of the Fetal Heart Rate. Viii. Patterns Preceding Fetal
Death, Further Observations. Am J Obstet Gynecol 87:814-826.
KannelWB, Schwartz MJ, McNamara PM (1969) Blood pressure and risk of coronary heart disease: the
Framingham study. Dis Chest 56:43-52.
KannelWB,Wolf PA, Verter J, McNamara PM (1970) Epidemiologic assessment of the role of blood
pressure in stroke. The Framingham study. 214:301-310.
Korpelainen JT, Tolonen U, Sotaniemi KA, Myllyla VV (1993) Suppressed sympathetic skin response in
brain infarction. Stroke 24:1389-1392.
Korpelainen JT, Sotaniemi KA, Huikuri HV, Myllya VV (1996) Abnormal heart rate variability as a
manifestation of autonomic dysfunction in hemispheric brain infarction. Stroke 27:2059-2063.
Kudoh M, Takahashi S, Yonezawa H (1997) Correlation between quantitative EEG and cerebral blood
flow and oxygen metabolism in patients with dementia of Alzheimer type. Rinsho Shinkeigaku
37:359-365.
Kuo TBJ, Yang CCH (2002) Sexual dimorphism in the complexity of cardiac pacemaker activity. Am J
Physiol Heart Circ Physiol 283:H1695-H1702.
Kuo TBJ, Yang CCH (2005) Sleep-related changes in cardiovascular neural regulation in spontaneously
hypertensive rats. Circulation 112:849-854.
Kuo TBJ, Lai CJ, Shaw FZ, Lai CW, Yang CCH (2004) Sleep-related sympathovagal imbalance in SHR.
Am J Physiol Heart Circ Physiol 286:H1170-1176.
Li C, Engstrom G, Hedblad B, Berglund G, Janzon L (2005) Blood pressure control and risk of stroke: a
population-based prospective cohort study. Stroke 36:725-730.
Liu XF, van Melle G, Bogousslavsky J (2005) Analysis of risk factors in 3901 patients with stroke. Chin
Med Sci J 20:35-39.
Lu XC,Williams AJ, Tortella FC (2001) Quantitative electroencephalography spectral analysis and
topographic mapping in a rat model of middle cerebral artery occlusion. Neuropathol Appl
Neurobiol 27:481-495.
62
Luczak H, LaurigW (1973) An analysis of heart rate variability. Ergonomics 16:85-97.
Miki K, Kato M, Kajii S (2003) Relationship between renal sympathetic nerve activity and arterial
pressure during REM sleep in rats. Am J Physiol Regul Integr Comp Physiol 284:R467-R473.
Monti A, Medigue C, Nedelcoux H, Escourrou P (2002) Autonomic control of the cardiovascular system
during sleep in normal subjects. Eur J Appl Physiol 87:174-181.
Moyanova S, Kortenska L, Kirov R, Iliev I (1998) Quantitative electroencephalographic changes due to
middle cerebral artery occlusion by endothelin 1 in conscious rats. Arch Physiol Biochem
106:384-391.
Murali NS, Svatikova A, Somers VK (2003) Cardiovascular physiology and sleep. Front Biosci
8:s636-652.
Myers MG, Norris JW, Hachinski VC,Weingert ME, Sole MJ (1982) Cardiac sequelae of acute stroke.
Stroke 13:838-842.
Nagata K, Tagawa K, Hiroi S, Shishido F, Uemura K (1989) Electroencephalographic correlates of blood
flow and oxygen metabolism provided by positron emission tomography in patients with cerebral
infarction. Electroencephalogr Clin Neurophysiol 72:16-30.
Oppenheimer SM, Cechetto DF, Hachinski VC (1990) Cerebrogenic cardiac arrhythmias. Cerebral
electrocardiographic influences and their role in sudden death. Arch Neurol 47:513-519.
Orlandi G, Fanucchi S, Strata G, Pataleo L, Landucci Pellegrini L, Prontera C, Martini A, Murri L (2000)
Transient autonomic nervous system dysfunction during hyperacute stroke. Acta Neurol Scand
102:317-321.
Rosenberg GA (1999) Ischemic brain edema. Prog Cardiovasc Dis 42:209-216.
Sacco SE,Whisnant JP, Broderick JP, Phillips SJ, O'FallonWM (1991) Epidemiological characteristics of
lacunar infarcts in a population. Stroke 22:1236-1241.
Saleh TM, Connell BJ (2007) Role of oestrogen in the central regulation of autonomic function. Clin Exp
Pharmacol Physiol 34:827-832.
Saleh TM, Connell BJ, Legge C, Cribb AE (2004) Estrogen attenuates neuronal excitability in the insular
cortex following middle cerebral artery occlusion. Brain Res 1018:119-129.
Saleh TM, Connell BJ, Legge C, Cribb AE (2005) Estrogen synthesis in the central nucleus of the
amygdala following middle cerebral artery occlusion: role in modulating neurotransmission.
Neuroscience 135:1141-1153.
Sayers BM (1973) Analysis of heart rate variability. Ergonomics 16:17-32.
SchulteW (1959) Hans Berger: a biography of the discoverer of the electroencephalogram. Munch Med
Wochenschr 101:977-980.
Schwartz PJ, La Rovere MT, Vanoli E (1992) Autonomic nervous system and sudden cardiac death.
Experimental basis and clinical observations for post-myocardial infarction risk stratification.
Circulation 85:I77-91.
Silver FL, Norris JW, Lewis AJ, Hachinski VC (1984) Early mortality following stroke: a prospective
review. Stroke 15:492-496.
63
Sokolov EN (1963) Higher nervous functions; the orienting reflex. Annu Rev Physiol 25:545-580.
Somers VK, Dyken ME, Mark AL, Abboud FM (1993) Sympathetic-nerve activity during sleep in normal
subjects. N Engl J Med 328:303-307.
Stein PK, Kleiger RE (1999) Insights from the study of heart rate variability. Annu Rev Med 50:249-261.
Stokes J, 3rd, KannelWB,Wolf PA, Cupples LA, D'Agostino RB (1987) The relative importance of
selected risk factors for various manifestations of cardiovascular disease among men and women
from 35 to 64 years old: 30 years of follow-up in the Framingham Study. Circulation 75:V65-V73.
Tolonen U, Sulg IA (1981) Comparison of quantitative EEG parameters from four different analysis
techniques in evaluation of relationships between EEG and CBF in brain infarction.
Electroencephalogr Clin Neurophysiol 51:177-185.
Torsvall L, Akerstedt T (1987) Sleepiness on the job: continuously measured EEG changes in train drivers.
Electroencephalogr Clin Neurophysiol 66:502-511.
Trinder J, Kleiman J, Carrington M, Smith S, Breen S, Tan N, Kim Y (2001) Autonomic activity during
human sleep as a function of time and sleep stage. J Sleep Res 10:253-264.
Tsai SK, Hung LM, Fu YT, Cheng H, Nien MW, Liu HY, Zhang FB, Huang SS (2007) Resveratrol
neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats. J
Vasc Surg 46:346-353.
Vock J, Achermann P, Bischof M, Milanova M, Muller C, Nirkko A, Roth C, Bassetti CL (2002)
Evolution of sleep and sleep EEG after hemispheric stroke. J Sleep Res 11:331-338.
Wolf MM, Varigos GA, Hunt D, Sloman JG (1978) Sinus arrhythmia in acute myocardial infarction. Med
J Aust 2:52-53.
Yang CCH, Kuo TBJ (1999) Assessment of cardiac sympathetic regulation by respiratory-related arterial
pressure variability in the rat. J Physiol 515 ( Pt 3):887-896.
Yang CCH, Shaw FZ, Lai CJ, Lai CW, Kuo TBJ (2003) Relationship between electroencephalogram
slow-wave magnitude and heart rate variability during sleep in rats. Neurosci Lett 336:21-24.
Zemke D, Smith JL, Reeves MJ, Majid A (2004) Ischemia and ischemic tolerance in the brain: an
overview. Neurotoxicology 25:895-904.
Zhang ZH, Rashba S, Oppenheimer SM (1998) Insular cortex lesions alter baroreceptor sensitivity in the
urethane-anesthetized rat. Brain Res 813:73-81.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top