跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳雅雯
研究生(外文):Ya-Wen Wu
論文名稱:中樞交感相關之神經元於甲基安非他命引發急性高血壓之角色探討
論文名稱(外文):The Role of Central Sympathetic Related Nuclei in Methamphetamine Induced Acute Hypertension
指導教授:林恂恂林恂恂引用關係
指導教授(外文):Hsun-Hsun Lin
學位類別:碩士
校院名稱:慈濟大學
系所名稱:整合生理暨臨床科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:61
中文關鍵詞:甲基安非他命前腹外側延腦血壓C型蛋白激��
外文關鍵詞:methamphetaminerostral ventrolateral medullablood pressureprotein kinase C
相關次數:
  • 被引用被引用:0
  • 點閱點閱:709
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
甲基安非他命 (Methamphetamine, MA) 是一種強效且易成癮的中樞神經興奮劑,不只會影響中樞神經行為,也會引起心血管功能之異常,包括心搏過速、心肌缺血以及高血壓。MA引發的升高血壓與心跳反應主要來自其對交感神經之作用。前腹外側延腦 (rostral ventrolateral medulla, RVLM) 為中樞興奮交感神經之核區,而後腹外側延腦 (caudal ventrolateral medulla, CVLM) 則為中樞抑制交感神經之核區;已知它們在持續性與反射性交感神經血壓調節作用中扮演重要角色。此觀點暗示了RVLM與CVLM也許與MA引發的高血壓有關。麩胺酸 (glutamate) 是這些中樞交感神經相關之神經核主要調控心血管功能的神經傳導物質;許多研究指出,磷酸化RVLM上離子型通道型麩胺酸受體-NMDA受體 (N-methy-D-asparate receptors, NMDARs) ,可增強該受體功能,增加中樞交感活性之輸出,造成急性高血壓。我們的研究結果顯示,麻醉動物經由側腦室 (50、150及500 nmol) 或清醒動物經由腹腔 (2及10 mg/kg) 投與MA,皆會引發劑量相關之升高血壓;同時顯著的增加RVLM區Fos蛋白的表達量。這些已獲致的數據顯示,RVLM可能參與了MA引發急性高血壓之中樞路徑。此外,腹腔注射MA (2 and 10 mg/kg) 會使RVLM區NMDA受體次單位NR1上的磷酸化serine 896蛋白質表現量增加,而此磷酸化作用是經由C型蛋白激�� (protein kinase C, PKC)所媒介。於RVLM微量注射投與PKC抑制劑bisindolymaleimide (BIM, 4 nmol) ,則可阻斷MA於麻醉大鼠引發的升壓作用。本實驗結果推測,MA引發的心血管毒性,特別是急性高血壓,是經由PKC磷酸化RVLM上NMDA受體次單位NR1,引起中樞交感活性輸出增加,導致急性高血壓。
Methamphetamine (MA) is a strongly addictive psychostimulant that not only affects the central neurobehaviour but also cause cardiovascular dysfunctions, including tachycardia, myocardial ischemia and hypertension. MA produces increase in blood pressure and the response of heart rate mainly via sympathetic nervous system. The rostral ventrolateral medulla (RVLM), a central sympathoactivating nucleus, and caudal ventrolateral medulla (CVLM), a central sympathoinhibitory nucleus, have been well known to be critical to the tonic and reflexive sympathetic regulation of arterial blood pressure. It suggests that the RVLM and CVLM may be relevant to the hypertension induced by MA. Glutamate is the primary neurotransmitter involved in the cardiovascular regulation in the central sympathetic-related nuclei. Results from many studies have revealed that phosphorylation of the ionotropic glutamate receptor- NMDA receptors (NMDARs) on the RVLM will increase the receptor function which leads to an increase in central sympathetic outflow resulting in acute hypertension. Our data showed that intracerebroventricular (i.c.v., 50, 150 and 500 nmol) or intraperitoneal (i.p., 2 and 10 mg/kg) administration of MA increased blood pressure in a dose-dependent manner in anesthetized and conscious rats, respectively. In the meanwhile, a significant increase in the level of Fos protein was found in the RVLM after administration of MA. The available data suggested that the RVLM might involve in the central command pathway of MA-induced acute hypertension. In addition, MA (2 and 10 mg/kg; i.p.) induced a significant increase in the expression of the phosphoserine 896 protein (regulated by PKC) on NR1 subunit in the RVLM. Microinjection of the selective protein kinase C (PKC) inhibitor bisindolymaleimide (BIM, 4 nmol) into the RVLM blocked MA-induced pressor effects in anesthetized rats. Our results suggest that MA induced cardiovascular toxicity, especially acute hypertension, is associated with the phosphorylation of NMDA receptor subunit NR1 by PKC in the RVLM, which leads to an increase in central sympathetic outflow causing acute hypertension.
中文摘要 …………………………………………………………… 1
英文摘要 …………………………………………………………… 2
壹、背景介紹
一、前言 …………………………………………………………… 3
二、文獻探討 ……………………………………………………… 3
1. MA與心血管作用 ………………………………………… 3
2. RVLM及CVLM與血壓的調控 ………………………………… 5
3. NMDA受體及蛋白質磷酸化作用 …………………………… 6
貳、研究目的與實驗設計
一、理論基礎 ……………………………………………………… 9
二、研究目的 ……………………………………………… 9
三、實驗假設 ……………………………………………… 9
四、實驗設計 ……………………………………………… 10
參、實驗方法材料與詳細步驟
一、實驗動物 …………………………………………… 15
二、實驗藥物 …………………………………………… 15
三、體內試驗 (In vivo studies)
(一) 麻醉鼠模式監測血壓、心跳變化 …………… 15
(二) 清醒鼠模式監測血壓、心跳變化 …………… 17
四、體外試驗 (In vitro studies) …………………… 18
五、統計分析方法 ………………………………………… 20
肆、結果 …………………………………………………………… 21
伍、討論 …………………………………………………………… 28
陸、結論 …………………………………………………………… 32
柒、參考文獻 ……………………………………………………… 33
捌、結果附圖 ……………………………………………………… 40
附錄一 …………………………………………………………… 56
Albensi, BC (2007) The NMDA receptor/ion channel complex: a drug target for modulating synaptic plasticity and excitotoxicity. Curr Pharm Des 13(31): 3185-3194.

Albertson, TE, Derlet, RW, Van Hoozen, BE (1999) Methamphetamine and the expanding complications of amphetamines. West J Med 170(4): 214-219.

Allan, AM, Galindo, R, Chynoweth, J, Engel, SR, Savage, DD (2001) Conditioned place preference for cocaine is attenuated in mice over-expressing the 5-HT(3) receptor. Psychopharmacology (Berl) 158(1): 18-27.

Anglin, MD, Burke, C, Perrochet, B, Stamper, E, Dawud-Noursi, S (2000) History of the methamphetamine problem. J Psychoactive Drugs 32(2): 137-141.

Arora, H, Owens, SM, Gentry, WB (2001) Intravenous (+)-methamphetamine causes complex dose-dependent physiologic changes in awake rats. Eur J Pharmacol 426(1-2): 81-87.

Bexis, S, Docherty, JR (2006) Effects of MDMA, MDA and MDEA on blood pressure, heart rate, locomotor activity and body temperature in the rat involve alpha-adrenoceptors. Br J Pharmacol 147(8): 926-934.

Bleich, S, Romer, K, Wiltfang, J, Kornhuber, J (2003) Glutamate and the glutamate receptor system: a target for drug action. Int J Geriatr Psychiatry 18(Suppl 1): S33-40.

Brayton, CF (1986) Dimethyl sulfoxide (DMSO): a review. Cornell Vet 76(1): 61-90.

Brown, DL, Guyenet, PG (1984) Cardiovascular neurons of brain stem with projections to spinal cord. Am J Physiol 247(6 Pt 2): R1009-1016.

Chan, SH, Wang, LL, Tseng, HL, Chan, JY (2007) Upregulation of AT1 receptor gene on activation of protein kinase Cbeta/nicotinamide adenine dinucleotide diphosphate oxidase/ERK1/2/c-fos signaling cascade mediates long-term pressor effect of angiotensin II in rostral ventrolateral medulla. J Hypertens 25(9): 1845-1861.

Chen, BS, Roche, KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53(3): 362-368.

Colombari, E, Sato, MA, Cravo, SL, Bergamaschi, CT, Campos, RR, Jr., Lopes, OU (2001) Role of the medulla oblongata in hypertension. Hypertension 38(3 Pt 2): 549-554.

Cull-Candy, S, Brickley, S, Farrant, M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11(3): 327-335.

Dampney, RA, Polson, JW, Potts, PD, Hirooka, Y, Horiuchi, J (2003) Functional organization of brain pathways subserving the baroreceptor reflex: studies in conscious animals using immediate early gene expression. Cell Mol Neurobiol 23(4-5): 597-616.

Edwards, MA, Loxley, RA, Powers-Martin, K, Lipski, J, McKitrick, DJ, Arnolda, LF, Phillips, JK (2004) Unique levels of expression of N-methyl-D-aspartate receptor subunits and neuronal nitric oxide synthase in the rostral ventrolateral medulla of the spontaneously hypertensive rat. Brain Res Mol Brain Res 129(1-2): 33-43.

Farnsworth, TL, Brugger, CH, Malters, P (1997) Myocardial infarction after intranasal methamphetamine. Am J Health Syst Pharm 54(5): 586-587.

Guyenet, PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7(5): 335-346.

Hanson, GR, Singh, N, Merchant, K, Johnson, M, Gibb, JW (1995) The role of NMDA receptor systems in neuropeptide responses to stimulants of abuse. Drug Alcohol Depend 37(2): 107-110.

Johnson, BA, Ait-Daoud, N, Wells, LT (2000) Effects of isradipine, a dihydropyridine-class calcium channel antagonist, on D-methamphetamine-induced cognitive and physiological changes in humans. Neuropsychopharmacology 22(5): 504-512.

Jung, R, Bruce, EN, Katona, PG (1991) Cardiorespiratory responses to glutamatergic antagonists in the caudal ventrolateral medulla of rats. Brain Res 564(2): 286-295.

Kawabe, T, Kawabe, K, Sapru, HN (2007) Cardiovascular responses to somatosensory stimulation and their modulation by baroreflex mechanisms. Clin Exp Hypertens 29(6): 403-418.

Kohr, G (2006) NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res 326(2): 439-446.

Lai, CC, Chang, MC, Lin, HH (2004) Acute tolerance to ethanol inhibition of NMDA-induced responses in rat rostral ventrolateral medulla neurons. J Biomed Sci 11(4): 482-492.

Lake, CR, Quirk, RS (1984) CNS stimulants and the look-alike drugs. Psychiatr Clin North Am 7(4): 689-701.

Lee, HK (2006) Synaptic plasticity and phosphorylation. Pharmacol Ther 112(3): 810-832.

Manna, S, Bhattacharyya, D, Mandal, TK, Das, S (2004) Repeated dose toxicity of alfa-cypermethrin in rats. J Vet Sci 5(3): 241-245.

Mark, KA, Soghomonian, JJ, Yamamoto, BK (2004) High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity. J Neurosci 24(50): 11449-11456.

McGuinness, T (2006) Methamphetamine abuse. Am J Nurs 106(12): 54-59.

Mendelson, J, Uemura, N, Harris, D, Nath, RP, Fernandez, E, Jacob, P, 3rd, Everhart, ET, Jones, RT (2006) Human pharmacology of the methamphetamine stereoisomers. Clin Pharmacol Ther 80(4): 403-420.

Minson, JB, Arnolda, LF, Llewellyn-Smith, IJ, Pilowsky, PM, Suzuki, S, Chalmers, JP (1996) Immediate early genes in blood pressure regulation. Clin Exp Hypertens 18(3-4): 279-290.

Minson, JB, Llewellyn-Smith, IJ, Chalmers, JP, Pilowsky, PM, Arnolda, LF (1997) c-fos identifies GABA-synthesizing barosensitive neurons in caudal ventrolateral medulla. Neuroreport 8(14): 3015-3021.

Morgan, JP (1992) Amphetamine and methamphetamine during the 1990s. Pediatr Rev 13(9): 330-333.

Moriguchi, S, Watanabe, S, Kita, H, Nakanishi, H (2002) Enhancement of N-methyl- D-aspartate receptor-mediated excitatory postsynaptic potentials in the neostriatum after methamphetamine sensitization. An in vitro slice study. Exp Brain Res 144(2): 238-246.

Muller, CP, Carey, RJ, Huston, JP, De Souza Silva, MA (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol 81(3): 133-178.

Nakajima, A, Yamada, K, He, J, Zeng, N, Nitta, A, Nabeshima, T (2004) Anatomical substrates for the discriminative stimulus effects of methamphetamine in rats. J Neurochem 91(2): 308-317.

Newton, TF, De La Garza, R, 2nd, Kalechstein, AD, Nestor, L (2005) Cocaine and methamphetamine produce different patterns of subjective and cardiovascular effects. Pharmacol Biochem Behav 82(1): 90-97.

Nijholt, I, Blank, T, Liu, A, Kugler, H, Spiess, J (2000) Modulation of hypothalamic NMDA receptor function by cyclic AMP-dependent protein kinase and phosphatases. J Neurochem 75(2): 749-754.

Ohmori, T, Abekawa, T, Koyama, T (1996) The role of glutamate in behavioral and neurotoxic effects of methamphetamine. Neurochem Int 29(3): 301-307.

Paoletti, P, Neyton, J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7(1): 39-47.

Pavese, N, Rimoldi, O, Gerhard, A, Brooks, DJ, Piccini, P (2004) Cardiovascular effects of methamphetamine in Parkinson's disease patients. Mov Disord 19(3): 298-303.

Paxinos, G, Watson, CS (1996) The rat brain in stereotaxic coordinates, compact 3rd edition CD-Rom. Academic Press, San Diego.

Pelaez, NM, Schreihofer, AM, Guyenet, PG (2002) Decompensated hemorrhage activates serotonergic neurons in the subependymal parapyramidal region of the rat medulla. Am J Physiol Regul Integr Comp Physiol 283(3): R688-697.

Pilowsky, PM, Goodchild, AK (2002) Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens 20(9): 1675-1688.

Quinton, MS, Yamamoto, BK (2006) Causes and consequences of methamphetamine and MDMA toxicity. Aaps J 8(2): E337-347.

Raymond, LA, Blackstone, CD, Huganir, RL (1993) Phosphorylation of amino acid neurotransmitter receptors in synaptic plasticity. Trends Neurosci 16(4): 147-153.

Roche, KW, Tingley, WG, Huganir, RL (1994) Glutamate receptor phosphorylation and synaptic plasticity. Curr Opin Neurobiol 4(3): 383-388.

Schindler, CW, Zheng, JW, Tella, SR, Goldberg, SR (1992) Pharmacological mechanisms in the cardiovascular effects of methamphetamine in conscious squirrel monkeys. Pharmacol Biochem Behav 42(4): 791-796.

Sonsalla, PK (1995) The role of N-methyl-D-aspartate receptors in dopaminergic neuropathology produced by the amphetamines. Drug Alcohol Depend 37(2): 101-105.

Stephenson, FA, Cousins, SL, Kenny, AV (2008) Assembly and forward trafficking of NMDA receptors (Review). Mol Membr Biol 25(4): 311-320.

Sulzer, D, Sonders, MS, Poulsen, NW, Galli, A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75(6): 406-433.
Sun, MK, Reis, DJ (1992) Effects of systemic ethanol on medullary vasomotor neurons and baroreflexes. Neurosci Lett 137(2): 232-236.

Sved, AF, Ito, S, Madden, CJ (2000) Baroreflex dependent and independent roles of the caudal ventrolateral medulla in cardiovascular regulation. Brain Res Bull 51(2): 129-133.

Sved, AF, Ito, S, Yajima, Y (2002) Role of excitatory amino acid inputs to the rostral ventrolateral medulla in cardiovascular regulation. Clin Exp Pharmacol Physiol 29(5-6): 503-506.

Sved, AF, Mancini, DL, Graham, JC, Schreihofer, AM, Hoffman, GE (1994) PNMT-containing neurons of the C1 cell group express c-fos in response to changes in baroreceptor input. Am J Physiol 266(2 Pt 2): R361-367.

Takayama, K, Miura, M (1991) Glutamate-immunoreactive neurons of the central amygdaloid nucleus projecting to the subretrofacial nucleus of SHR and WKY rats: a double-labeling study. Neurosci Lett 134(1): 62-66.

Tani, K, Iyo, M, Matsumoto, H, Kawai, M, Suzuki, K, Iwata, Y, Won, T, Tsukamoto, T, Sekine, Y, Sakanoue, M, Hashimoto, K, Ohashi, Y, Takei, N, Mori, N (2001) The effects of dentate granule cell destruction on behavioural activity and Fos protein expression induced by systemic methamphetamine in rats. Br J Pharmacol 134(7): 1411-1418.

Tingley, WG, Ehlers, MD, Kameyama, K, Doherty, C, Ptak, JB, Riley, CT, Huganir, RL (1997) Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J Biol Chem 272(8): 5157-5166.

Varner, KJ, Ogden, BA, Delcarpio, J, Meleg-Smith, S (2002) Cardiovascular responses elicited by the "binge" administration of methamphetamine. J Pharmacol Exp Ther 301(1): 152-159.

Vazhappilly, R, Sucher, NJ (2004) Translational regulation of the N-methyl-D-aspartate receptor subunit NR1. Neurosignals 13(4): 190-193.

Volz, TJ, Hanson, GR, Fleckenstein, AE (2007) The role of the plasmalemmal dopamine and vesicular monoamine transporters in methamphetamine-induced dopaminergic deficits. J Neurochem.

Wang, JJ, Rong, WF, Wang, WZ, Zhang, L, Yuan, WJ (2000) NMDA receptor mechanism involved in arterial baroreflex. Acta Pharmacol Sin 21(7): 617-622.

Wang, JQ, Liu, X, Zhang, G, Parelkar, NK, Arora, A, Haines, M, Fibuch, EE, Mao, L (2006) Phosphorylation of glutamate receptors: a potential mechanism for the regulation of receptor function and psychostimulant action. J Neurosci Res 84(8): 1621-1629.

Wang, YT, Salter, MW (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369(6477): 233-235.

Waxman, EA, Lynch, DR (2005) N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11(1): 37-49.

Yamakura, T, Shimoji, K (1999) Subunit- and site-specific pharmacology of the NMDA receptor channel. Prog Neurobiol 59(3): 279-298.

Yoshida, K, Morimoto, A, Makisumi, T, Murakami, N (1993) Cardiovascular, thermal and behavioral sensitization to methamphetamine in freely moving rats. J Pharmacol Exp Ther 267(3): 1538-1543.

Yu, Q, Larson, DF, Watson, RR (2003) Heart disease, methamphetamine and AIDS. Life Sci 73(2): 129-140.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top