(35.175.212.130) 您好!臺灣時間:2021/05/15 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:鍾俊輝
研究生(外文):Chun-hui Chung
論文名稱:醋酸鈣不動桿菌中與粘菌素抗藥性相關基因之功能分析
論文名稱(外文):Functional analysis of Colistin resistance associated genes in Acinetobacter sp. ADP1
指導教授:張凱誌
指導教授(外文):Kai-Chih Chang
學位類別:碩士
校院名稱:慈濟大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:89
中文關鍵詞:醋酸鈣不動桿菌粘菌素
外文關鍵詞:Acinetobacter sp. ADP1Colistin
相關次數:
  • 被引用被引用:1
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
多重抗藥性之鮑式不動桿菌 (Multi-drug resistant Acinetobacter baumannii) 會造成嚴重的院內感染,在過去並沒有適當的抗生素能夠用來治療。最近有review paper指出能夠以colistin治療多重抗藥性革蘭氏陰性菌所引起的感染。但是本實驗室發現多重抗藥性的鮑式不動桿菌在接觸colistin後易轉變成colistin具抗性的菌株。過去並無關於Acinetobacter spp.對colistin抗藥機制的研究,因此我們將針對Acinetobacter spp.與抗colistin有關的基因做一分析。首先以逐步提高colistin濃度的方法,分別誘導ATCC33305 (Acinetobacter sp. ADP1) 以及ATCC17978 (Acinetobacter baumannii) 菌株,使之形成對colistin具抗藥性的菌株,同時將它們命名為33305CR以及17978CR。首先要研究的基因為ACIAD0727,我們以RT-PCR分析,發現ACIAD0727在抗藥性菌株33305CR的RNA表現量高於敏感性菌株。接著分別在ATCC33305以及33305CR中破壞ACIAD0727這個基因,結果發現在標準菌株ATCC33305破壞ACIAD0727這個基因後會使細菌較難以被誘導出抗colistin的抗藥菌株。而在33305CR內破壞ACIAD0727這個基因後,發現突變株對colistin之最低抑菌濃度明顯下降。然而透過ACIAD0727的互補實驗,我們發現互補菌株對於colistin之最低抑菌濃度只有部份的補回,可能是由於互補菌株RNA表現量低於原本菌株的表現量所導致。經由資料庫比對,由ATCC17978中找到一個與Acinetobacter sp. ADP1之ACIAD0727有高達94 %相似性的基因A1S_0749,我們發現破壞A1S_0749這個基因也會造成17978CR對於colistin最低抑菌濃度下降,從以上結果推測ACIAD0727以及A1S_0749的確與colistin的抗藥性有關。最後進一步對於ACIAD0727以及A1S_0749去做功能性分析,發現這兩個基因皆不受鎂離子濃度調節。另外破壞ACIAD0727以及A1S_0749後會造成細菌從non-mucoid form轉變為mucoid form,因此我們推測這兩個基因或許與Acinetobacter spp.之exopolysaccharide的調控相關。
Multi-drug resistant Acinetobacter baumannii had been verified in making severe nosocomial infection. In the past, there was no any appropriate antibiotic to cure it, but recently, presented by some review papers, indicated that colistin is capable of cure from the infections of multi-drug resistant gram-negative bacteria. Unfortunately, the multi-drug resistant Acinetobacter baumannii was easy to convert into colistin- resistant lineage when colistins existed surrounding its environment. There was no any related study about the mechanism of colistin resistance by Acinetobacter spp. presented before. Therefore, we were intended to study and focus on the analysis of colistin-resistant genes in Acinetobacter spp.
First, we produced the colistin-resistant (CR) bacterial lineages, 33305CR and 17978CR, from induction of ATCC33305 (Acinetobacter sp. ADP1) and ATCC17978 (Acinetobacter baumannii) respectively by the method that increasing the colistin concentration gradually. Then, we used RT-PCR to analyze the gene ACIAD0727 and found that the RNA amount of ACIAD0727 gene expressed was higher in resistant bacterial lineage 33305CR than the sensitive lineage. Further, we tried to destroy the ACIAD0727 genes in both ATCC33305 and 33305CR lineages for additional analyses. The results showed that the standard bacterial lineage ATCC33305 with ACIAD0207 gene destroyed was more difficult to be induced to become the colistin-resistant one and the minimal inhibitory concentration (MIC) against colistin was obviously decreased in 33305CR lineage with ACIAD0207 gene destroyed. Whereas, with performing the complementary experience of ACIAD0727 gene, we found that the MIC against colistin was compensated for only a little degree by the complementary lineage. This maybe result from the amount of RNA expressed by the complementary lineage was less than original 33305CR lineage. By contrasting with the database, we could find the gene corresponding to the ACIAD0727 gene of Acinetobacter sp. ADP1 in ATCC17978 lineage, the A1S_0749 gene, with up to 94 % similarity. We also found the MIC against colistin was decreased in 17978CR lineage when destroying the A1S_0749 gene.
Based on the results above, we could deduce that both the ACIAD0727 and A1S_0749 genes were related to the colistin resistance. Finally, we performed the functional analyses for both genes and obtained the result that they were not regulated by the concentration of magnesium (Mg2+) ion. Furthermore, destruction of both genes would make the bacterial lineage become mucoid form from non-mucoid one. Thus, we deduced the ACIAD0727 and A1S_0749 genes may be concerned with the exopolysaccharide regulation in Acinetobacter spp.
中文摘要 I
英文摘要 II
目錄 1
第一章 前言 7
1.1 不動桿菌屬 (Acinetobacter) 之命名及特性 7
1.2 鮑氏不動桿菌 (A. baumannii) 的致病性及傳染途徑 7
1.3 鮑氏不動桿菌的治療 8
1.4 全抗藥性鮑氏不動桿菌的興起 8
1.5 Colistin的特性及臨床上之使用 9
1.6 Polymyxin類抗生素抗藥性基因的研究 10
1.7 鮑氏不動桿菌的抗藥性基因的研究 10
1.8 鮑氏不動桿菌生物膜的生成 11
1.9 細菌的不同型態以及細菌mucoid form的相關研究 11
1.10 Acinetobacter sp. ADP1的自然轉型作用 12
1.11 研究目的 12
第二章 材料 14
2.1 培養基 14
2.2 引子 14
2.3 限制�� 16
2.4 抗生素 16
2.5 質體 16
2.6 大腸桿菌菌株 17
2.7 不動桿菌菌株 17
第三章 方法 22
3.1 抗生素感受性試驗 22
3.2 繼代培養並篩選抗藥性菌株 22
3.3 以脈衝式電泳分析細菌的型別 22
3.4 萃取細菌染色體DNA 23
3.5 聚合��鏈鎖反應 (Polymerase Chain Reaction,PCR) 24
3.6 TA選殖 24
3.7 製備勝任細胞 25
3.8 熱休克轉型作用 (heatshock transformation) 25
3.9 電穿孔 (electroporation) 轉型作用 25
3.10 質體純化 26
3.11 試管內破壞ACIAD0727,ACIAD3388,A1S_0749基因 27
3.12 分別構築ACIAD0727,ACIAD3388, ACIAD2238在ATCC33305內遭破壞的突變株 27
3.13 分別構築ACIAD0727,ACIAD3388,ACIAD2238在33305CR內遭破壞的突變株 28
3.14 分別構築A1S_0749在ATCC17978以及17978CR內遭破壞的突變株 28
3.15 各別對ATCC33305,ATCC17978以及它們所衍生出的突變菌株做colistin誘導實
驗 28
3.16 個別對33305CR, 17978CR以及它們所衍生出的突變菌株做colistin感受性試驗
29
3.17 對ATCC33305及33305CR所衍生出之突變菌株做互補(complementation) 試驗 29
3.18 對ATCC17978以及17978CR所衍生出之突變菌株做互補試驗 30
3.19 南方墨漬雜交法 (Southern blotting hybridization) 30
3.20 以Reverse transcription-PCR (RT-PCR) 對ATCC33305,33305CR ATCC17978,17978CR以及它們所衍生之突變株以及互補菌株做基因表現量分析 32
3.21 以microtiter plate的方法做黏附型生物膜 (biofilm) 之定量分析 35
3.22 以polystyrene tube去觀察細菌生物膜的生成量 35
第四章 結果 36
4.1 抗colistin抗藥性菌株的誘導以及其型別的分析 36
4.2 ATCC33305中可能與colistin抗藥性相關基因功能之預測 36
4.3 標準菌株ATCC33305以及抗藥性菌株33305CR之RNA表現量分析 37
4.4 利用試管內破壞的方法建構ACIAD0727,ACIAD3388破壞的質體 38
4.5 以PCR確認ATCC33305及33305CR內破壞ACIAD0727、ACIAD2238、ACIAD3388基因的
突變株 38
4.6 對ATCC33305內ACIAD2238、ACIAD0727、ACIAD3388遭破壞的突變株做colistin抗
藥性誘導 38
4.7 對33305CR內ACIAD2238,ACIAD0727,ACIAD3388遭破壞的突變株測定colistin最
低抑菌濃度 39
4.8 以南方點墨法 (Southern blot) 確認ACIAD0727確實在ATCC33305以及33305CR遭
破壞 39
4.9 對於ATCC33305以及33305CR的ACIAD0727突變株,在染色體上做互補 (Cis-complementation) 40
4.10 對ATCC33305以及33305CR的ACIAD0727突變株,以shuttle vector做互補
(trans-complementation) 40
4.11 對ATCC33305 ACIAD0727C1、ATCC33305 ACIAD0727T1以及33305CR
ACIAD0727C1、33305CR ACIAD0727T1,分別測定其誘導能力以及最小抑菌濃度 41
4.12 對33305CR ACIAD0727C1、33305CR ACIAD0727T1做ACIAD0727 RNA表現量分析 41
4.13 以PCR確認在17978CR內破壞A1S_0749 41
4.14 對於17978CR A1S_0749測定colistin最低抑菌濃度 42
4.15 構築17978CR A1S_0749內的A1S_0749質體互補菌株 42
4.16 對17978CR A1S_0749T1測定colistin最低抑菌濃度 43
4.17 將A1S_0749於ATCC17978做破壞,並觀察菌落型態的轉變 43
4.18 以RT-PCR去觀察在ATCC33305中A1S_0749、A1S_0748,以及ATCC17978中
ACIAD0726、ACIAD0727是否由相同的啟動子所調控 43
4.19 構築ATCC17978 A1S_0749中的A1S_0748與A1S_0749質體互補菌株 44
4.20 觀察ATCC17978 A1S_0749及ATCC17978 A1S_0749T2菌落型態的轉變 44
4.21 ATCC33305 ACIAD0727菌落型態的轉變 44
4.22 對ATCC17978 A1S_0749及ATCC17978 A1S_0749T2做黏附型生物膜定量分析 45
4.23 對ATCC17978 A1S_0749及ATCC17978 A1S_0749T2以polystyrene tube觀察黏附型
生物膜45
4.24 A1S_0749以及ACIAD0727基因表現與鎂離子濃度的關聯 46
4.25 抗colistin抗藥性菌株以及非抗藥性菌特性上之差異 46
4.26 構築33305CR ACIAD0727突變株的ACIAD0726與ACIAD0727質體互補菌株 47
4.27 對33305CR ACIAD0727T2測定其最小抑菌濃度 47
第五章 討論 48
第六章 圖表 52
第七章 參考文獻 79



圖表目錄
表一 經由colistin誘導出之抗藥性不動桿菌菌株以及標準菌株對於colistin的感受性
分析結果 52
表二 ATCC33305 (Acinetobacter sp. ADP1) 及其衍生出之突變株和互補菌株之
colistin誘導結果 53
表三 對33305CR及其衍生的突變株和互補菌株做colistin最小抑菌濃度測試結果 54
表四 對17978CR的突變株以及互補菌株做colistin最小抑菌濃度測試結果 55
圖一 脈衝式電泳分析標準菌株以及抗藥性菌株結果圖 56
圖二 ATCC33305標準菌株及33305CR抗藥性菌株在colistin抗藥性相關基因RNA表現量
的比較結果 57
圖三 EZ-Tn5�� <R6Kori/KAN-2> Insertion Kit之標準操作流程圖 58
圖四 不動桿菌ACIAD0727遭破壞突變株之構築與確認 59
圖五 以PCR確認不動桿菌ACIAD2238,ACIAD3388基因個別遭破壞 60
圖六 以Southern blot確認不動桿菌之ACIAD0727遭破壞的突變株 61
圖七 不動桿菌之ACIAD0727突變株之互補菌株的構築與確認 62
圖八 不動桿菌之ACIAD0727互補質體的構築與確認 63
圖九 333305CR ACIAD0727C1及33305CR ACIAD0727T1之ACIAD0727 RNA表現量之分析 64
圖十 不動桿菌17978CR之A1S_0749突變株之構築與確認 65
圖十一 不動桿菌之A1S_0749互補質體的構築與確認 66
圖十二 17978CR A1S_0749T1內A1S_0749之RNA表現量分析 67
圖十三 比較ATCC17978 A1S_0749及ATCC33305 ACIAD0727之菌落型態差異 68
圖十四 分析在ATCC33305中A1S_0749、A1S_0748,以及ATCC17978中ACIAD0726、
ACIAD0727是否由相同的啟動子所調控 69
圖十五 不動桿菌之A1S_0748-A1S_0749互補質體的構築與確認 70
圖十六 比較ATCC17978 A1S_0749,ATCC17978 A1S_0749T2之間型態的差異 71
圖十七 17978CR A1S_0749T2內A1S_0749之RNA表現量分析 72
圖十八 在ATCC17978及A1S_0749遭破壞之突變株,與其互補菌株黏附型生物膜之生成量
的分析 73
圖十九 分析在ATCC17978及A1S_0749遭破壞之突變株,與其互補菌株黏附型生物膜之生
成情況 74
圖二十 比較在不同濃度鎂離子下,A1S_0749及ACIAD0727基因RNA表現量上的差異 75
圖二十一 ATCC33305標準菌株以及33305CR抗藥性菌株之DNA攝入能力分析結果 76
圖二十二 分析標準菌株以及抗藥性菌株之黏附型生物膜生成能力 77
圖二十三 不動桿菌之ACIAD0726-ACIAD0727互補質體的構築與確認 78
1.Allegrucci, M., and K. Sauer. 2007. Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. J Bacteriol 189:2030-8.
2.Anthony, M., B. Rose, M. B. Pegler, M. Elkins, H. Service, K. Thamotharampillai, J. Watson, M. Robinson, P. Bye, J. Merlino, and C. Harbour. 2002. Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol 40:2772-8.
3.Baraibar, J., H. Correa, D. Mariscal, M. Gallego, J. Valles, and J. Rello. 1997. Risk factors for infection by Acinetobacter baumannii in intubated patients with nosocomial pneumonia. Chest 112:1050-4.
4.Barbe, V., D. Vallenet, N. Fonknechten, A. Kreimeyer, S. Oztas, L. Labarre, S. Cruveiller, C. Robert, S. Duprat, P. Wincker, L. N. Ornston, J. Weissenbach, P. Marliere, G. N. Cohen, and C. Medigue. 2004. Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32:5766-79.
5.Baumann, P. 1968. Isolation of Acinetobacter from soil and water. J Bacteriol 96:39-42.
6.Bergogne-Berezin, E., and K. J. Towner. 1996. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9:148-65.
7.Beringer, P. 2001. The clinical use of colistin in patients with cystic fibrosis. Curr Opin Pulm Med 7:434-40.
8.Bosso, J. A., C. A. Liptak, D. K. Seilheimer, and G. M. Harrison. 1991. Toxicity of colistin in cystic fibrosis patients. Dicp 25:1168-70.
9.Boucher, J. C., H. Yu, M. H. Mudd, and V. Deretic. 1997. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 65:3838-46.
10.Busch, S., C. Rosenplanter, and B. Averhoff. 1999. Identification and characterization of ComE and ComF, two novel pilin-like competence factors involved in natural transformation of Acinetobacter sp. strain BD413. Appl Environ Microbiol 65:4568-74.
11.Buxton, T. B., J. Horner, A. Hinton, and J. P. Rissing. 1987. In vivo glycocalyx expression by Staphylococcus aureus phage type 52/52A/80 in S. aureus osteomyelitis. J Infect Dis 156:942-6.
12.Catchpole, C. R., J. M. Andrews, N. Brenwald, and R. Wise. 1997. A reassessment of the in-vitro activity of colistin sulphomethate sodium. J Antimicrob Chemother 39:255-60.
13.Conway, S. P., M. N. Pond, A. Watson, C. Etherington, H. L. Robey, and M. H. Goldman. 1997. Intravenous colistin sulphomethate in acute respiratory exacerbations in adult patients with cystic fibrosis. Thorax 52:987-93.
14.Corbella, X., A. Montero, M. Pujol, M. A. Dominguez, J. Ayats, M. J. Argerich, F. Garrigosa, J. Ariza, and F. Gudiol. 2000. Emergence and rapid spread of carbapenem resistance during a large and sustained hospital outbreak of multiresistant Acinetobacter baumannii. J Clin Microbiol 38:4086-95.
15.Damier-Piolle, L., S. Magnet, S. Bremont, T. Lambert, and P. Courvalin. 2008. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 52:557-62.
16.Devaud, M., F. H. Kayser, and B. Bachi. 1982. Transposon-mediated multiple antibiotic resistance in Acinetobacter strains. Antimicrob Agents Chemother 22:323-9.
17.DeVries, C. A., and D. E. Ohman. 1994. Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J Bacteriol 176:6677-87.
18.Doern, G. V., and S. A. Morse. 1980. Branhamella (Neisseria) catarrhalis: criteria for laboratory identification. J Clin Microbiol 11:193-5.
19.Fonseca, A. P., and J. C. Sousa. 2007. Effect of shear stress on growth, adhesion and biofilm formation of Pseudomonas aeruginosa with antibiotic-induced morphological changes. Int J Antimicrob Agents 30:236-41.
20.Garcia-Rodriguez, J. A., M. I. Garcia-Garcia, E. Garcia-Sanchez, J. E. Garcia-Sanchez, and J. L. Munoz Bellido. 1989. [In vitro activity of 16 antimicrobial agents against Helicobacter (Campylobacter) pylori]. Enferm Infecc Microbiol Clin 7:544-6.
21.Garcia Vescovi, E., F. C. Soncini, and E. A. Groisman. 1996. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84:165-74.
22.Gerner-Smidt, P., I. Tjernberg, and J. Ursing. 1991. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol 29:277-82.
23.Gouby, A., M. J. Carles-Nurit, N. Bouziges, G. Bourg, R. Mesnard, and P. J. Bouvet. 1992. Use of pulsed-field gel electrophoresis for investigation of hospital outbreaks of Acinetobacter baumannii. J Clin Microbiol 30:1588-91.
24.Gunn, J. S., and S. I. Miller. 1996. PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J Bacteriol 178:6857-64.
25.Gunn, J. S., S. S. Ryan, J. C. Van Velkinburgh, R. K. Ernst, and S. I. Miller. 2000. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun 68:6139-46.
26.Haagensen, J. A., M. Klausen, R. K. Ernst, S. I. Miller, A. Folkesson, T. Tolker-Nielsen, and S. Molin. 2007. Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189:28-37.
27.Hancock, R. E., and D. S. Chapple. 1999. Peptide antibiotics. Antimicrob Agents Chemother 43:1317-23.
28.Hershberger, C. D., R. W. Ye, M. R. Parsek, Z. D. Xie, and A. M. Chakrabarty. 1995. The algT (algU) gene of Pseudomonas aeruginosa, a key regulator involved in alginate biosynthesis, encodes an alternative sigma factor (sigma E). Proc Natl Acad Sci U S A 92:7941-5.
29.Herzberg, C., A. Friedrich, and B. Averhoff. 2000. comB, a novel competence gene required for natural transformation of Acinetobacter sp. BD413: identification, characterization, and analysis of growth-phase-dependent regulation. Arch Microbiol 173:220-8.
30.Hoiby, N. 1993. Antibiotic therapy for chronic infection of pseudomonas in the lung. Annu Rev Med 44:1-10.
31.Hoyle, B. D., and J. W. Costerton. 1991. Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37:91-105.
32.Hsueh, P. R., L. J. Teng, C. Y. Chen, W. H. Chen, C. J. Yu, S. W. Ho, and K. T. Luh. 2002. Pandrug-resistant Acinetobacter baumannii causing nosocomial infections in a university hospital, Taiwan. Emerg Infect Dis 8:827-32.
33.Hu, W. S., S. M. Yao, C. P. Fung, Y. P. Hsieh, C. P. Liu, and J. F. Lin. 2007. An OXA-66/OXA-51-like carbapenemase and possibly an efflux pump are associated with resistance to imipenem in Acinetobacter baumannii. Antimicrob Agents Chemother 51:3844-52.
34.Joly-Guillo, M. L., E. Vallee, E. Bergogne-Berezin, and A. Philippon. 1988. Distribution of beta-lactamases and phenotype analysis in clinical strains of Acinetobacter calcoaceticus. J Antimicrob Chemother 22:597-604.
35.Kampfer, P., I. Tjernberg, and J. Ursing. 1993. Numerical classification and identification of Acinetobacter genomic species. J Appl Bacteriol 75:259-68.
36.Li, J., R. L. Nation, R. W. Milne, J. D. Turnidge, and K. Coulthard. 2005. Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents 25:11-25.
37.Li, J., C. R. Rayner, R. L. Nation, R. J. Owen, D. Spelman, K. E. Tan, and L. Liolios. 2006. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 50:2946-50.
38.Li, J., J. Turnidge, R. Milne, R. L. Nation, and K. Coulthard. 2001. In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother 45:781-5.
39.Link, C., S. Eickernjager, D. Porstendorfer, and B. Averhoff. 1998. Identification and characterization of a novel competence gene, comC, required for DNA binding and uptake in Acinetobacter sp. strain BD413. J Bacteriol 180:1592-5.
40.Macfarlane, E. L., A. Kwasnicka, M. M. Ochs, and R. E. Hancock. 1999. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34:305-16.
41.Marceau, M., F. Sebbane, F. Ewann, F. Collyn, B. Lindner, M. A. Campos, J. A. Bengoechea, and M. Simonet. 2004. The pmrF polymyxin-resistance operon of Yersinia pseudotuberculosis is upregulated by the PhoP-PhoQ two-component system but not by PmrA-PmrB, and is not required for virulence. Microbiology 150:3947-57.
42.Marchand, I., L. Damier-Piolle, P. Courvalin, and T. Lambert. 2004. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother 48:3298-304.
43.Martin, D. W., M. J. Schurr, M. H. Mudd, J. R. Govan, B. W. Holloway, and V. Deretic. 1993. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90:8377-81.
44.McPhee, J. B., M. Bains, G. Winsor, S. Lewenza, A. Kwasnicka, M. D. Brazas, F. S. Brinkman, and R. E. Hancock. 2006. Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol 188:3995-4006.
45.Metzgar, D., J. M. Bacher, V. Pezo, J. Reader, V. Doring, P. Schimmel, P. Marliere, and V. de Crecy-Lagard. 2004. Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. Nucleic Acids Res 32:5780-90.
46.Miller, S. I., A. M. Kukral, and J. J. Mekalanos. 1989. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A 86:5054-8.
47.Minagawa, S., H. Ogasawara, A. Kato, K. Yamamoto, Y. Eguchi, T. Oshima, H. Mori, A. Ishihama, and R. Utsumi. 2003. Identification and molecular characterization of the Mg2+ stimulon of Escherichia coli. J Bacteriol 185:3696-702.
48.Moskowitz, S. M., R. K. Ernst, and S. I. Miller. 2004. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 186:575-9.
49.O'Toole, G. A., and R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449-61.
50.Ophir, T., and D. L. Gutnick. 1994. A Role for Exopolysaccharides in the Protection of Microorganisms from Desiccation. Appl Environ Microbiol 60:740-745.
51.Pagel, J. E., and P. L. Seyfried. 1976. Numerical taxonomy of aquatic Acinetobacter isolates. J Gen Microbiol 96:220-32.
52.Peleg, A. Y., J. Adams, and D. L. Paterson. 2007. Tigecycline Efflux as a Mechanism for Nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 51:2065-9.
53.Porstendorfer, D., U. Drotschmann, and B. Averhoff. 1997. A novel competence gene, comP, is essential for natural transformation of Acinetobacter sp. strain BD413. Appl Environ Microbiol 63:4150-7.
54.Qiu, D., V. M. Eisinger, D. W. Rowen, and H. D. Yu. 2007. Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104:8107-12.
55.Ramsey, D. M., and D. J. Wozniak. 2005. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56:309-22.
56.Rodriguez-Bano, J., S. Marti, S. Soto, F. Fernandez-Cuenca, J. M. Cisneros, J. Pachon, A. Pascual, L. Martinez-Martinez, C. McQueary, L. A. Actis, and J. Vila. 2008. Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clin Microbiol Infect 14:276-8.
57.Scerpella, E. G., A. R. Wanger, L. Armitige, P. Anderlini, and C. D. Ericsson. 1995. Nosocomial outbreak caused by a multiresistant clone of Acinetobacter baumannii: results of the case-control and molecular epidemiologic investigations. Infect Control Hosp Epidemiol 16:92-7.
58.Schurr, M. J., H. Yu, J. M. Martinez-Salazar, J. C. Boucher, and V. Deretic. 1996. Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol 178:4997-5004.
59.Seifert, H., A. Strate, and G. Pulverer. 1995. Nosocomial bacteremia due to Acinetobacter baumannii. Clinical features, epidemiology, and predictors of mortality. Medicine (Baltimore) 74:340-9.
60.Smith, M. G., T. A. Gianoulis, S. Pukatzki, J. J. Mekalanos, L. N. Ornston, M. Gerstein, and M. Snyder. 2007. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 21:601-14.
61.Tamayo, R., S. S. Ryan, A. J. McCoy, and J. S. Gunn. 2002. Identification and genetic characterization of PmrA-regulated genes and genes involved in polymyxin B resistance in Salmonella enterica serovar typhimurium. Infect Immun 70:6770-8.
62.Tomaras, A. P., C. W. Dorsey, R. E. Edelmann, and L. A. Actis. 2003. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149:3473-84.
63.Tran, A. X., J. D. Whittimore, P. B. Wyrick, S. C. McGrath, R. J. Cotter, and M. S. Trent. 2006. The lipid A 1-phosphatase of Helicobacter pylori is required for resistance to the antimicrobial peptide polymyxin. J Bacteriol 188:4531-41.
64.Vidal, R., M. Dominguez, H. Urrutia, H. Bello, G. Gonzalez, A. Garcia, and R. Zemelman. 1996. Biofilm formation by Acinetobacter baumannii. Microbios 86:49-58.
65.Weinbren, M. J., A. P. Johnson, M. E. Kaufmann, and D. M. Livermore. 1998. Acinetobacter spp. isolates with reduced susceptibilities to carbapenems in a UK burns unit. J Antimicrob Chemother 41:574-6.
66.Wozniak, D. J., T. J. Wyckoff, M. Starkey, R. Keyser, P. Azadi, G. A. O'Toole, and M. R. Parsek. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100:7907-12.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top