跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何彥志
研究生(外文):Yan Chi Ho
論文名稱:我國航太產業導入商業智慧之個案研究
論文名稱(外文):A Case Study of Implementing Business Intelligence in Taiwan Aerospace Industry
指導教授:洪堯勳洪堯勳引用關係
指導教授(外文):Jau-Shin Hon
學位類別:碩士
校院名稱:東海大學
系所名稱:工業工程與經營資訊學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:82
中文關鍵詞:商業智慧我國航太產業資料倉儲資訊系統導入
外文關鍵詞:Business IntelligenceTaiwan Aerospace IndustryData WarehouseImplementation of Information System
相關次數:
  • 被引用被引用:1
  • 點閱點閱:555
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
歐美主要商務飛機製造公司為求降低製造成本,以新的供應鏈策略運用全球化的專業垂直分工與水平整合代工的模式拓展其供應商體系。我國航太產業因工資相對低廉而成為供應鏈成員之一。所以個案公司從過去以軍機制造、維修為主,轉為軍民共用,營運也從過去任務導向轉為利潤導向,在此情況下個案公司自覺惟有調整策略,並快速、正確掌握營運狀況,才能轉虧為盈。因此,對於個案公司而言如何透過適當的資訊系統協助企業是目前重要的課題。
目前提供決策者進行決策的資訊都是由交易型的資訊系統收集而來,其中以ERP為主。然而此類型系統主要於任務導向背景時所建構,因此其強調記錄營運原始資料、產出制式報表與進行基礎資料查詢的功能。相較於中高階決策者需於做決策時對領先指標分析的需求,過於細微的資料、定期的制式報表往往無法滿足其需求。尤其在當決策者需要各種不同角度的資訊時,往往需透過人工收集的方式來滿足,導致目前個案公司無法即時、正確取得有用的情報,進而造成資訊不對稱,導致管理者低估或高估目前營運狀況,提高決策錯誤的機率。
因此,本研究採用個案研究方式,瞭解個案公司面臨環境變化及資訊收集、彙整、分析的方式與問題。藉由文獻探討及資料收集與個案訪談,首先以目前急於解決的存貨與應收帳款問題為例,制定符合新環境營運需求的關鍵績效指標,並針對個案公司商業智慧解決方案導入規劃程序與步驟,進一步深入探討,以作為其他企業導入商業智慧的參考。
本研究結果顯示,利用商業智慧解決方案解決存貨與應收帳款資料蒐集、彙總及整理不易之問題,減少人力及時間的浪費,並可即時且多維度的查看所需的資料;另一方面利用獲得的資料,透過視覺化系統的顏色管理和圖表功能,進一步幫助公司決策者進行高品質的決策。
Major commercial aircraft manufacturers in Europe and America are developing new supply chain strategies leveraging global and regional subcontractors in specialized techniques to achieve vertical disintegration and horizontal integrations. the aerospace industry uses the Asian partners which the wage is lower to be the targeted supply chain groups of vertical collaboration. The company in this case has turned their business operation orientation from mission oriented into profit leading. And also, their business scope has turned from military aircraft production only into both civil and military aircraft production. The company is aware of the competitive environment they are facing and thus adjusting their strategies to adopt proper information system to assist enterprise to catch business operation status rapidly and correctly such that they can increase their profit.
The information provided for decision maker is all collected from the information system of trading activities; the most popular one is ERP. However, this kind of system is developed under the background of mission orientation. Therefore, it focuses on operational raw data recording, formal report generation, and basic information inquiry. Mid to high level decision maker needs to get analysis of leading indicators to make a proper decision, the over detail data and regular formal report cannot satisfy their needs. Especially when they need the information from different perspective, it always takes manual collection. These caused the company cannot get the information correctly at once, and result in the information asymmetry. Finally the manager overestimates or underestimates the current operating situation, and rise up the probability of improper policy.
With this, this study adopts case study to understand the environment that this company is facing, the problems they encountered regarding information collection, disposition and analysis. Base on the reference investigation, data collection and interview, to analyze the Business Intelligence system structure of aerospace industry. And take the problem of inventory and account receivable which is eager to solve as an example, to bring up a solution which conform to the Business Intelligence of the distinction of Aerospace Industry to those related people who faced this kind of problem.
To use Business Intelligence to solve problems of inventory and account receivable, data collected, dispose and analysis in order to reduce the waste of manpower and time. And it can get the real-time data in need. On the other hand, using the information, to generate visualized, colored graphs and charts, it helps the company to make more high quality decision
摘要 III
ABSTRACT IV
致謝 V
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1.1研究背景與動機 1
1.3研究方法 5
1.4研究範圍 6
第二章、文獻探討 8
2.1資訊市場的演進 8
2.2商業智慧(BUSINESS INTELLIGENCE; BI) 9
2.2.1 ERP與商業智慧關係 9
2.2.2商業智慧理論 10
2.2.3商業智慧的觀念架構 11
2.2.4商業智慧的新價值 12
2.2.6傳統交易型資料庫與資料倉儲的差異 17
2.2.7商業智慧系統導入方法論 18
2.2.8商業智慧的運用範疇 21
2.2.9商業智慧系統效益與導入系統成敗之因素 22
第三章 航太產業概況與個案分析 25
3.1航太產業供應鏈結構 25
3.2航太產業特性 27
3.3個案公司沿革與組織架構 28
3.4個案公司之業務概況 30
3.5個案公司所面臨內外環境問題 32
3.5.1外部環境 32
3.5.2內部環境 33
3.5.3小結 34
3.6個案公司之電子化現況 34
3.7個案公司存貨面臨之問題與挑戰 38
3.8個案公司應收帳款面臨之問題與挑戰 41
3.9個案公司營運現況分析 43
3.10本章小結 45
第四章 個案公司因應方案 46
4.1商業智慧解決方案 46
4.1.1專案規劃(Project Planning) 47
4.1.2定義企業需求(Defining Business Requirements) 47
4.1.3技術領域—技術架構(Technical Architecture Design) 48
4.1.4技術領域—產品選擇及安裝(Product Selection & Installation) 49
4.1.5資料領域—維度模式設計(Dimensional Modeling) 50
4.1.6資料領域—資料集結設計及開發(ETL Design & Development)與資料庫實體設計(Physical Design) 57
4.1.7商業智慧應用領域—商業智慧應用程式規劃與開發(BI Application Specification and Development) 61
4.1.8系統部署(Deployment) 63
4.1.9系統維護及成長管理(Maintenance & Growth) 63
4.1.10專案管理(Project Management) 64
4.2商業智慧解決方案成效 64
第五章 結論與未來研究方向 67
5.1結論 67
5.3未來研究方向 69
參考文獻 70
一、中文部分 70
二、英文部分 72
一、中文部分
丁錫鏞編,2001。2010 年六大新興產業,台北,嵐德出版社
工研院,2001。2001航太公會年鑑,工研院。
王立志,2006。系統化運籌與供應鏈管理,滄海書局。
王信介,1999。資料倉儲(Data Warehouse)的應用與發展,彰銀資料,第48 期,第1~15 頁。
王茁,2005。商業智慧,初版,博碩文化股份有限公司,台北。
朱海成、王昌斌、汪允文,2001。知識管理應用於營建業─使用企業入口網站之研究,第一期,第1~12頁。
行政院經濟建設委員會,2002。我國加入WTO後對經濟之影響及因應對策報告,我國與WTO。
吳文宗,2000。資料倉儲和ERP 的親密關係,資訊與電腦,第240 期,第44~48頁。
吳姝蒨,2002,商業智慧的應用面向與成功導入關鍵要素,電子化企業經理人報告(ARC Business Intelligence),第5 期,第12~22頁。
吳顯忠,2007。商業智慧系統導入與公司營運績效之相關性,東海大學會計研究所碩士論文。
李來錫、葉惠忠、戴宏仁,2006。應用商業智慧於製程參數挑選之研究,管理科學研究,Vol.3, No.1, 2006,第61~73頁。
李震東、王育才,1999。由麥克波特『國家競爭力理論』剖析我國航太工業發展之策略,航太通訊,第三十三期,第23~27頁。
柯福富,2004,以商業智慧系統建構企業營運關鍵績效指標之研究,中原大學企業管理研究所碩士論文。
胡謹、李龍鑫,2001。九一一恐怖攻擊事件對航空產業的影響,台中漢翔月刊
倪育煌,2006。應用商業智慧架構於作業基礎管理之研究-以精密鍛鑄業為例,東海大學工業工程研究所碩士論文。
張志緯,2001。以Business Dimensional Lifecycle 方法開發 Data Warehouse 系統之初探,中央大學資訊管理研究所碩士論文。
梁定澎,2006。決策資源系統與企業智慧,初版,智勝文化事業有限公司,台北。
陳心玲,2001。國營事業民營化過程中人才外移對於產業所造成知識外溢效果之研究-以漢翔公司為例,國立政治大學企業管理研究所碩士論文。
陳依蘋,2002。新經濟商業智慧,會計研究月刊,第201期,第45~50頁。
黃繡鳳,2002。911影響 航太產業訂單銳減 經營日益困難,工商時報。
經濟部,2004。促進國內航空工業發展策略與作法,經濟部研究報告。
歐嘉瑞,李娓偉,莊國昌,1999。世界各國政府對航太工業補貼政策之研究,產業論壇。
鍾雯玫,2003。以支援平衡計分卡為決策基礎之資料倉儲建置,國立台灣科技大學工業管理研究所論文
藍兩家,2001。航太產業新趨勢--淺談航太工業與電子商務,航太工業通訊,第44期,頁51~55。
蘇隄,2000。企業建構資料倉儲的六項關鍵議題,電子化企業:經理人報告,第七期,第31~36 頁。
二、英文部分
Alex B., Stephen J. Smith, 1997. Data Warehousing, Data Mining & OLAP, McGraw-Hill Company, New York.
Azvine B., Z. Cui, D. Nauck, B. Majeed, 2006. Real Time Business Intelligence for the Adaptive Enterprise, Journal of IEEE.
Barry K., 2006. Saving Time and Money-Why Open –Source BI Makes Sense, Business Intelligence Journal, 11(4), pp.18-24.
Benbasat, I., D. K. Goldstein, and M. Mead, 1987. The Case Research Strategy in Studies of Information System, MIS Quarterly, l(11), pp.369-386.
Christopher, M., 1992. Logistic and Supply Chain Management: Strategies for Reducing Costs and Improving Services, Pitman, London.
Colin, J. W., 1999. The IBM Business Intelligence Software Solution, Data Base Associates International Inc., Version 3.
David, S., 2001. Designing and Managing the Supply Chain, Concepts, Strategies, and Case, McGraw-Hill Inc.
Duffy, J., 2000. Knowledge Management: What Every Information Professional Should Know, Information Management Journal.
Duhon, B., 2002. Business intelligence, AIIM E-Doc Magazine, 16(5), pp.12-13.
Fitzgerald, B., 2003. Using BI tools to turn information into action, Financial Executive, 19(2), pp.46-47.
Gary, A.G., D. Roger, 1996. Who needs performance management, Management Accounting, 74(11), pp.20-25.
Geiger, J. G., 2002. How data warehousing supports BI, Business Finance. Loveland, 8(3), pp. 42-43.
Harding, W., 2003. BI crucial to making the right decision, Financial Executive, ABI/INFORM Global, pp. 49.
Harding, W., 2003. BI crucial to making the right decision, Financial Executive, Morristown, 19(2), pp.49-50.
Hugh, J. Waston, 2006. Three Targets for Data Warehousing, Business Intelligence Journal, 11(4), pp.4-7.
Jeffrey, L. Whitten, Lonnie D. Bentley, Kevin C. Dittman, 2002. System Analysis and Design Methods, McGraw Hill, New York.
Kempf, T., 2001. Business-Intelligence Apps: Companies want them, but are emerging integrators prepared to deliver?, VARbusiness Manhasset, 1712, pp.74.
Kendler, P. B., 2003. Information you can act on, Insurance & Technology. New York, 28(1), pp. 41-42.
Kimball, R., Reeves, L., Ross, M., and Thornthwaite, W., 1998, The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing, and Deploying Data Warehouses, John Wiley & Sons, N.Y..
Langerak, F., 2003. Strategically Embedding CRM, Business Strategy Review, 14(4), pp 73–80.
Laura I. R., W., Rahayu and David Taniar, 2005. A Methodology for Building XML Data Warehouses, International Journal of Data Warehousing & Mining., pp.23-48.
Moss, L.T., and Atre, S., 2003.Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-Support Applications, Addison Wesley, Boston, MA.
Mundy, J., Thornthwaite, W. and Kimball, R., 2006. The Microsoft Data Warehouse Toolkit: With SQL Server 2005 and the Microsoft Business Intelligence Toolset, Wiley Publishing, Inc., Indianapolis, Indiana, 2006.
Paul Z., 2006. Business Intelligence Deployment Strategies: A Pragmatic Pattern-Based Approach, Business Intelligence Journal, 11(3), pp.52-63.
Ronnie A, 2007. A New Generation of Middleware Solution for a Near-Real-Time Data Warehousing Architecture. Journal of IEEE.,pp.192-197.
Schlegel, K., 2006. Magic Quadrant for Business Intelligence Platforms, IQ06, Gartner Research.
Sen, A. and Sinha, A. P., 2005. A Comparison Of Data Warehousing Methodologies, Communications of the ACM, 48(3), pp.12-21.
Shaku Atre, 2006. A Business Intelligence Roadmap:Project Planning, Addison Wesley Professional.
Sharma, R., 2000. Business intelligence: Clues from trends , Australian CPA. Melbourne, 70(1), pp.22-23
Sharma, R., 2000. Business intelligence: Clues from trends, Australian CPA, Melbourne, Australia, pp.22.
Thomas Back, 2002. Adaptive business intelligence based on evolution strategies software, Information Sciences, pp.113-121.
Tom, H., 1996. Data Warehousing – Building the Corporate Knowledge Base, International Thomas Publishing Company.
Tzu-Tsung Wong, Kuo-Lung Tseng, 2005. Mining negative contrast sets from data with discrete attributes, Expert Systems With Applications, 29, pp.401-407.
Watson, Hugh J., Annino, David, A., Wixom, Barbara H., Avery, K. Liddell, and Rutherford, Mathew, 2001. Current Practices in Data Warehousing, Information Systems Management, 18(1), pp. 47-55.
Wayne Eckorson, 2003. TDWI REPORT SERIES–Smart Companies in the 21st Century: The secrets of creating successful Business Intelligence Solutions.
Yin, R. K., 1998. Case Study Research Design and Methods.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top