(44.192.112.123) 您好!臺灣時間:2021/03/09 00:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林玉俊
研究生(外文):Yu-Chun, Lin
論文名稱:Caveolin-1蛋白與ABCA1蛋白在動脈內皮細胞膽固醇釋出中的交互關係
論文名稱(外文):The relationships between caveolin-1 and ABCA1 on cellular cholesterol efflux in aortic endothelial cells
指導教授:鄭葳鄭葳引用關係
指導教授(外文):Vie Cheng
學位類別:博士
校院名稱:東海大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:180
中文關鍵詞:Caveolin-1蛋白ABCA1蛋白膽固醇釋出內皮細胞
外文關鍵詞:Caveolin-1ABCA1Cholesterol effluxendothelial cells
相關次數:
  • 被引用被引用:1
  • 點閱點閱:328
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
動脈管壁中累積過多的膽固醇是造成動脈粥瘤硬化的主因之ㄧ。血管內皮細胞位於管壁最內層,持續與血液中攜帶膽固醇的低密度脂蛋白質作用,但卻不會像平滑肌細胞及巨噬細胞在粥瘤形成時無限制地累積膽固醇,故內皮細胞的膽固醇釋出機制一定有其特殊之處,瞭解其機制對於防止動脈硬化極為重要。Caveolin-1與ATP-binding cassette transporter (ABCA1)被發現在許多種細胞中會幫助膽固醇釋出,而本實驗室先前發現caveolin-1與ABCA1在內皮細胞中會共同分佈並有交互作用,但此兩種蛋白質幫助內皮細胞膽固醇釋出的詳細機制並未有人探討。本研究證實在內皮細胞中大量表現caveolin-1會增加ABCA1表現並增加膽固醇釋出。大量表現caveolin-1也會增加由高密度脂蛋白質所調控膽固醇釋出的“caveolae”結構,而利用轉殖siRNA降低caveolin-1表現,則會減少ABCA1表現並降低膽固醇釋出。另一方面,減少ABCA1表現會抑制caveolin-1所調控的膽固醇釋出。免疫沉澱結果顯示細胞處理高密度脂蛋白質後,caveolin-1與ABCA1會在細胞膜及細胞質中形成蛋白質間的交互作用。將pABCA1-flag及phCav-1-myc-His重組基因轉殖進HEK 293T細胞表達出ABCA1-flag蛋白質及caveolin-1-myc-His蛋白質,再利用anti-flag agarose及Ni-NTA親合性管柱純化出兩種蛋白質,利用pull down測試法證實ABCA1-flag蛋白質與caveolin-1-myc-His蛋白質屬直接結合。免疫電子顯微鏡結果顯示caveolin-1與ABCA1共同分佈於細胞膜的caveolae上及細胞質中的小胞囊,且caveolin-1、ABCA1與膽固醇也共同分佈於細胞質及細胞膜上。三種抑制胞囊運送的抑制劑:progesterone、brefeldin A及monensin,會破壞caveolin-1與ABCA1間的交互作用並減少細胞內膽固醇傳送到細胞膜上及釋放給高密度脂蛋白質。此結果顯示caveolin-1與ABCA1的交互作用與高密度脂蛋白質所調控的膽固醇釋出有密切關係。我們接著分析ABCA1在caveolin-1所調控膽固醇釋出中所扮演的角色。利用轉殖siRNA降低ABCA1表現不會影響caveolin-1蛋白質表現,但會抑制caveolin-1寡聚化且使caveolin-1停留在高基氏體。西方點墨法及免疫螢光染色結果顯示高密度脂蛋白質會增加ABCA1表現進而引發caveolin-1寡聚化,及促使caveolin-1離開高基氏體到細胞膜上並刺激膽固醇釋出。這些由高密度脂蛋白質所引發的現象會因降低ABCA1的表現而被抑制。綜合上述結果,我們認為,在動脈內皮細胞中,高密度脂蛋白質會快速增加ABCA1表現,而ABCA1會調控caveolin-1寡聚化並促使caveolin-1及膽固醇離開高基氏體到細胞膜上來幫助膽固醇釋出。
Accumulation of excess cholesterol in the arterial wall is one of the major factors in the development of atherosclerosis. Vascular endothelial cells (ECs) interact continuously with low-density lipoprotein (LDL) but do not unrestrictedly accumulate cholesterol which seen in vascular smooth muscle cells and macrophages. Understanding the mechanism of cholesterol efflux in ECs may shed light to prevent the atherosclerosis. Caveolin-1 and ATP-binding cassette transporter A1 (ABCA1) are two important proteins that intimately involved in cellular cholesterol transport as well as cholesterol efflux in many cell types. Our previous study showed that caveolin-1 colocalized and interacted with ABCA1 in the aortic endothelial cells. However, the interactions between caveolin-1 and ABCA1 in the cholesterol efflux in aortic ECs are poorly understood. This study indicated that overexpression of caveolin-1 in aortic ECs up-regulated ABCA1 expression and enhanced cholesterol efflux. Suppression of caveolin-1 by siRNA decreased ABCA1 expression and reduced cholesterol efflux. On the other hand, suppression of ABCA1 by siRNA do not affect caveolin-1 expression but led to the retention of caveolin-1 in the Golgi apparatus, impaired caveolin-1 oligomerization, and inhibited the caveolin-1-mediated cholesterol efflux. Immunoprecipitation assays revealed a molecular interaction between caveolin-1 and ABCA1 in the plasma membrane and in the cytoplasm after HDL incubation. ABCA1 protein and caveolin-1 protein were purified by anti-flag agarose and Ni-NTA affinity column from pABCA1-flag transfected cells and phCav-1-myc-His transfected cells respectively. Pull down assay demonstrated the interaction between caveolin-1 and ABCA1 was a direct interaction. Immunoelectron microscopy demonstrated that caveolin-1 colocalized with ABCA1 in the caveolae and in the cytoplasm vesicles; the caveolin-1 and ABCA1 also colocalized with cellular cholesterol by immunofluorescence microscopy. Blocking of intracellular lipid transport by inhibitors: progesterone, brefeldin A and monensin, disrupted the interaction between caveolin-1 and ABCA1 and reduced the translocation of cholesterol to HDL. These results suggest that the molecular interaction between caveolin-1 and ABCA1 is associated with the HDL-mediated cholesterol efflux in aortic ECs. Immunoblotting assay and immunofluorescence microscopy demonstrated that HDL, but not apoAI or BSA, up-regulated ABCA1 expression, induced caveolin-1 oligomerization, and promote its Golgi exit, thereby enhancing cholesterol efflux. These HDL-induced events, however, were inhibited by down-regulated of ABCA1. Taken together, we conclude that ABCA1 modulates the oligomerization and Golgi exit of caveolin-1 during HDL-mediated cholesterol efflux in aortic ECs.
目錄-------------------------------------------------------------- 1
中文摘要---------------------------------------------------------- 8
英文摘要--------------------------------------------------------- 10
前言------------------------------------------------------------- 12
研究目的--------------------------------------------------------- 31
實驗材料--------------------------------------------------------- 37
實驗方法--------------------------------------------------------- 45
結果------------------------------------------------------------- 61
結論------------------------------------------------------------- 82
討論------------------------------------------------------------- 84
參考文獻--------------------------------------------------------- 105
附表-------------------------------------------------------------136
附圖-------------------------------------------------------------139
圖-------------------------------------------------------------- 147
個人資料表-------------------------------------------------------- 175
Curriculum Vitae------------------------------------------------ 178
已發表論文------------------------------------------------------- 181
Alder-Baerens, N., Muller, P., Pohl, A., Korte, T., Hamon, Y., Chimini, G., Pomorski, T., and Herrmann, A. (2005). Headgroup-specific exposure of phospholipids in ABCA1-expressing cells. Journal of Biological Chemistry 280, 26321-26329.
Anderson, R.G.W. (1998). The caveolae membrane system. Annual Review of Biochemistry 67, 199-225.
Arakawa, R., Abe-Dohmae, S., Asai, M., Ito, J., and Yokoyama, S. (2000). Involvement of caveolin-1 in cholesterol enrichment of high density lipoprotein during its assembly by apolipoprotein and THP-1 cells. Journal of Lipid Research 41, 1952-1962.
Arakawa, R., and Yokoyama, S. (2002). Helical apolipoproteins stabilize ATP-binding cassette transporter A1 by protecting it from thiol protease-mediated degradation. Journal of Biological Chemistry 277, 22426-22429.
Arbuzova, A., Wang, L.B., Wang, J.Y., Hangyas-Mihalyne, G., Murray, D., Honig, B., and McLaughlin, S. (2000). Membrane binding of peptides containing both basic and aromatic residues. Experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS. Biochemistry 39, 10330-10339.
Assmann, G., Carmena, R., Cullen, P., Fruchart, J.C., Jossa, F., Lewis, B., Mancini, M., Paoletti, R., and Coronary, I.T.F.P. (1999). Coronary heart disease: Reducing the risk - A worldwide view. Circulation 100, 1930-1938.
Babitt, J., Trigatti, B., Rigotti, A., Smart, E.J., Anderson, R.G.W., Xu, S.Z., and Krieger, M. (1997). Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. Journal of Biological Chemistry 272, 13242-13249.
Bared, S.M., Buechler, C., Boettcher, A., Dayoub, R., Sigruener, A., Grandl, M., Rudolph, C., Dada, A., and Schmitz, G. (2004). Association of ABCA1 with syntaxin 13 and flotillin-1 and enhanced phagocytosis in Tangier cells. Molecular Biology of the Cell 15, 5399-5407.
Bodzioch, M., Orso, E., Klucken, T., Langmann, T., Bottcher, L., Diederich, W., Drobnik, W., Barlage, S., Buchler, C., Porsch-Ozcurumez, M., et al. (1999). The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nature Genetics 22, 347-351.
Boyle, E.M., Lille, S.T., Allaire, E., Clowes, A.W., and Verrier, E.D. (1997). Endothelial cell injury in cardiovascular surgery: Atherosclerosis. Annals of Thoracic Surgery 63, 885-894.
Briand, O., Lestavel, S., Pilon, A., Torpier, G., Fruchart, J.C., and Clavey, V. (2003). SR-BI does not require raft/caveola localisation for cholesteryl ester selective uptake in the human adrenal cell line NCI-H295R. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 1631, 42-50.
Brooks-Wilson, A., Marcil, M., Clee, S.M., Zhang, L.H., Roomp, K., van Dam, M., Yu, L., Brewer, C., Collins, J.A., Molhuizen, H.O.F., et al. (1999). Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genetics 22, 336-345.
Brown, M.S., and Goldstein, J.L. (1976). Receptor-mediated control of cholesterol-metabolism. Science 191, 150-154.
Chao, W.T., Fan, S.S., Chen, J.K., and Yang, V.C. (2003). Visualizing caveolin-1 and HDL in cholesterol-loaded aortic endothelial cells. Journal of Lipid Research 44, 1094-1099.
Chao, W.T., Tsai, S.H., Lin, Y.C., Lin, W.W., and Yang, V.C. (2005). Cellular localization and interaction of ABCA1 and caveolin-1 in aortic endothelial cells after HDL incubation. Biochemical and Biophysical Research Communications 332, 743-749.
Chen, W.G., Silver, D.L., Smith, J.D., and Tall, A.R. (2000). Scavenger receptor-BI inhibits ATP-binding cassette transporter 1-mediated cholesterol efflux in macrophages. Journal of Biological Chemistry 275, 30794-30800.
Chen, Y.L., Jan, K.M., Lin, H.S., and Chien, S. (1997). Relationship between endothelial cell turnover and permeability to horseradish peroxidase. Atherosclerosis 133, 7-14.
Cheng, Z.J., Singh, R.D., Sharma, D.K., Holicky, E.L., Hanada, K., Marks, D.L., and Pagano, R.E. (2006). Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Molecular Biology of the Cell 17, 3197-3210.
Collot-Teixeira, S., Martin, J., McDennott-Roe, C., Poston, R., and McGregor, J.L. (2007). CD36 and macrophages in atherosclerosis. Cardiovascular Research 75, 468-477.
Conrad, P.A., Smart, E.J., Ying, Y.S., Anderson, R.G.W., and Bloom, G.S. (1995). Caveolin cycles between plasma-membrane caveolae and the Golgi-complex by microtubule-dependent and microtubule-
independent Steps. Journal of Cell Biology 131, 1421-1433.
Costet, P., Luo, Y., Wang, N., and Tall, A.R. (2000). Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. Journal of Biological Chemistry 275, 28240-28245.
Couet, J., Li, S.W., Okamoto, T., Ikezu, T., and Lisanti, M.P. (1997). Identification of peptide and protein ligands for the caveolin-scaffolding domain - Implications for the interaction of caveolin with caveolae-associated proteins. Journal of Biological Chemistry 272, 6525-6533.
de la Llera-Moya Margarita, C.M., Drazul D, Klein SM, Favari E, Yancey PG, Williams DL, Rothblat GH (2001). Scavenger receptor class B type I affects cholesterol homeostasis by magnifying cholesterol flux between cells and HDL. Journal of lipid research 42, 1969-1978.
Dean, M., Hamon, Y., and Chimini, G. (2001). The human ATP-binding cassette (ABC) transporter superfamily. Journal of Lipid Research 42, 1007-1017.
Denis, M., Haidar, B., Marcil, M., Bouvier, M., Krimbou, L., and Genest, J. (2004). Characterization of oligomeric human ATP binding cassette transporter A1 - Potential implications for determining the structure of nascent high density lipoprotein particles. Journal of Biological Chemistry 279, 41529-41536.
Dietzen, D.J., Hastings, W.R., and Lublin, D.M. (1995). Caveolin Is palmitoylated on multiple cysteine residues - palmitoylation is not necessary for Localization of Caveolin to Caveolae. Faseb Journal 9, A1475-A1475.
Diglio, C.A., Grammas, P., Giacomelli, F., and Wiener, J. (1989). Angiogenesis in rat aorta ring explant cultures. Laboratory Investigation 60, 523-531.
Drab, M., Verkade, P., Elger, M., Kasper, M., Lohn, M., Lauterbach, B., Menne, J., Lindschau, C., Mende, F., Luft, F.C., et al. (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293, 2449-2452.
Dupree, P., Parton, R.G., Raposo, G., Kurzchalia, T.V., and Simons, K. (1993). Caveolae and sorting in the trans-Golgi network of epithelial-cells. Embo Journal 12, 1597-1605.
Engelman, J.A., Wykoff, C.C., Yasuhara, S., Song, K.S., Okamoto, T., and Lisanti, M.P. (1997). Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. Journal of Biological Chemistry 272, 16374-16381.
Faggiotto, A., Ross, R., and Harker, L. (1984). Studies of hypercholesterolemia in the nonhuman primate .1. changes that lead to fatty streak formation. Arteriosclerosis 4, 323-340.
Fielding, C.J., and Fielding, P.E. (1995a). Molecular physiology of reverse cholesterol transport. Journal of Lipid Research 36, 211-228.
Fielding, C.J., and Fielding, P.E. (2000). Cholesterol and caveolae: structural and functional relationships. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1529, 210-222.
Fielding, C.J., and Fielding, P.E. (2001). Caveolae and intracellular trafficking of cholesterol. Advanced Drug Delivery Reviews 49, 251-264.
Fielding, P.E., and Fielding, C.J. (1995b). Plasma-membrane caveolae mediate the efflux of cellular free-cholesterol. Biochemistry 34, 14288-14292.
Fielding, P.E., Nagao, K., Hakamata, H., Chimini, G., and Fielding, C.J. (2000). A two-step mechanism for free cholesterol and phospholipid efflux from human vascular cells to apolipoprotein A-1. Biochemistry 39, 14113-14120.
Fra, A.M., Williamson, E., Simons, K., and Parton, R.G. (1995). De-Novo Formation of caveolae in lymphocytes by expression of Vip21-caveolin. Proceedings of the National Academy of Sciences of the United States of America 92, 8655-8659.
Francis, G.A., and Perry, R.J. (1999). Targeting HDL-mediated cellular cholesterol efflux for the treatment and prevention of atherosclerosis. Clinica Chimica Acta 286, 219-230.
Frangos, J.A., Eskin, S.G., Mcintire, L.V., and Ives, C.L. (1985). Flow effects on prostacyclin production by cultured human-endothelial cells. Science 227, 1477-1479.
Frank, P.G., Cheung, M.W.C., Pavlides, S., Llaverias, G., Park, D.S., and Lisanti, M.P. (2006). Caveolin-1 and regulation of cellular cholesterol homeostasis. American Journal of Physiology-Heart and Circulatory Physiology 291, H677-H686.
Frank, P.G., Galbiati, F., Volonte, D., Razani, B., Cohen, D.E., Marcel, Y.L., and Lisanti, M.P. (2001). Influence of caveolin-1 on cellular cholesterol efflux mediated by high-density lipoproteins. American Journal of Physiology-Cell Physiology 280, C1204-C1214.
Frank, P.G., Marcel, Y.L., Connelly, M.A., Lublin, D.M., Franklin, V., Williams, D.L., and Lisanti, M.P. (2002). Stabilization of caveolin-1 by cellular cholesterol and scavenger receptor class B type I. Biochemistry 41, 11931-11940.
Fu, Y., Hoang, A., Escher, G., Parton, R.G., Krozowski, Z., and Sviridov, D. (2004). Expression of caveolin-1 enhances cholesterol efflux in hepatic cells. Journal of Biological Chemistry 279, 14140-14146.
Fujimoto, T., Kogo, H., Nomura, R., and Une, T. (2000). Isoforms of caveolin-1 and caveolar structure. Journal of Cell Science 113, 3509-3517.
Galbiati, F., Engelman, J.A., Volonte, D., Zhang, X.L., Minetti, C., Li, M.M., Hou, H., Kneitz, B., Edelmann, W., and Lisanti, M.P. (2001). Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and T-tubule abnormalities. Journal of Biological Chemistry 276, 21425-21433.
Gargalovic, P., and Dory, L. (2003). Caveolins and macrophage lipid metabolism. Journal of Lipid Research 44, 11-21.
Gelissen, I.C., Harris, M., Rye, K.A., Quinn, C., Brown, A.J., Kockx, M., Cartland, S., Packianathan, M., Kritharides, L., and Jessup, W. (2006). ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arteriosclerosis Thrombosis and Vascular Biology 26, 534-540.
Gennaro, G., Menard, C., Michaud, S.E., Deblois, D., and Rivard, A. (2004). Inhibition of vascular smooth muscle cell proliferation and neointimal formation in injured arteries by a novel, oral mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor. Circulation 110, 3367-3371.
Glass, C.K., and Witztum, J.L. (2001). Atherosclerosis: The road ahead. Cell 104, 503-516.
Glebov, O.O., Bright, N.A., and Nichols, B.J. (2006). Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nature Cell Biology 8, 46-U16.
Glenney, J.R., and Soppet, D. (1992). Sequence and expression of caveolin, a protein-component of caveolae plasma-membrane domains phosphorylated on tyrosine in Rous-Sarcoma virus-transformed fibroblasts. Proceedings of the National Academy of Sciences of the United States of America 89, 10517-10521.
Glenney, J.R., and Zokas, L. (1989). Novel tyrosine kinase substrates from Rous-Sarcoma virus-transformed cells are present in the membrane skeleton. Journal of Cell Biology 108, 2401-2408.
Guendouzi, K., Collet, X., Perret, B., Chap, H., and Barbaras, R. (1998). Remnant high density lipoprotein(2) particles produced by hepatic lipase display high-affinity binding and increased endocytosis into a human hepatoma cell line (HEPG(2)). Biochemistry 37, 14974-14980.
Hamon, Y., Broccardo, C., Chambenoit, O., Luciani, M.F., Toti, F., Chaslin, S., Freyssinet, J.M., Devaux, P.F., McNeish, J., Marguet, D., et al. (2000). ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nature Cell Biology 2, 399-406.
Herz, J., Hamann, U., Rogne, S., Myklebost, O., Gausepohl, H., and Stanley, K.K. (1988). Surface location and high-affinity for calcium of a 500-Kd liver membrane-protein closely related to the LDL-receptor suggest a physiological-role as lipoprotein receptor. Embo Journal 7, 4119-4127.
Hu, B., Li, D.Y., Sawamura, T., and Mehta, J.L. (2003). Oxidized LDL through LOX-1 modulates LDL-receptor expression in human coronary artery endothelial cells. Biochemical and Biophysical Research Communications 307, 1008-1012.
Ji, Y., Jian, B., Wang, N., Sun, Y., Moya, M.D.L.L., Phillips, M.C., Rothblat, G.H., Swaney, J.B., and Tall, A.R. (1997). Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. Journal of Biological Chemistry 272, 20982-20985.
Jian, B., de la Llera-Moya, M., Ji, Y., Wang, N., Phillips, M.C., Swaney, J.B., Tall, A.R., and Rothblat, G.H. (1998). Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. Journal of Biological Chemistry 273, 5599-5606.
Johansson, J., Carlson, L.A., Landou, C., and Hamsten, A. (1991). High-density-lipoproteins and coronary atherosclerosis - a strong inverse relation with the largest particles is confined to normotriglyceridemic patients. Arteriosclerosis and Thrombosis 11, 174-182.
Kannel, W.B., Wilson, P., and Blair, S.N. (1985). Epidemiological assessment of the role of physical-activity and fitness in development of cardiovascular-disease. American Heart Journal 109, 876-885.
Kao, C.H., Chen, J.K., Kuo, J.S., and Yang, V.C. (1995). Visualization of the transport pathways of low-density lipoproteins across the endothelial-cells in the branched regions of rat arteries. Atherosclerosis 116, 27-41.
Kao, C.H., Chen, J.K., and Yang, V.C. (1994). Ultrastructure and permeability of endothelial-cells in branched regions of rat arteries. Atherosclerosis 105, 97-114.
Kellner-Weibel, G., de la Llera-Moya, M., Connelly, M.A., Stoudt, G., Christian, A.E., Haynes, M.P., Williams, D.L., and Rothblat, G.H. (2000). Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution. Biochemistry 39, 221-229.
Kennedy, M.A., Barrera, G.C., Nakamura, K., Baldan, A., Tarr, P., Fishbein, M.C., Frank, J., Francone, O.L., and Edwards, P.A. (2005). ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metabolism 1, 121-131.
Kirkham, M., Fujita, A., Chadda, R., Nixon, S.J., Kurzchalia, T.V., Sharma, D.K., Pagano, R.E., Hancock, J.F., Mayor, S., and Parton, R.G. (2005). Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. Journal of Cell Biology 168, 465-476.
Klausner, R.D., Donaldson, J.G., and Lippincottschwartz, J. (1992). Brefeldin-a - Insights into the Control of Membrane Traffic and Organelle Structure. Journal of Cell Biology 116, 1071-1080.
Klucken, J., Buchler, C., Orso, E., Kaminski, W.E., Porsch-Ozcurumez, M., Liebisch, C., Kapinsky, M., Diederich, W., Drobnik, W., Dean, M., et al. (2000). ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proceedings of the National Academy of Sciences of the United States of America 97, 817-822.
Kurzchalia, T.V., Dupree, P., Parton, R.G., Kellner, R., Virta, H., Lehnert, M., and Simons, K. (1992). Vip21, a 21-Kd Membrane-Protein Is an Integral Component of Trans-Golgi-Network-Derived Transport Vesicles. Journal of Cell Biology 118, 1003-1014.
Langmann, T., Klucken, J., Reil, M., Liebisch, G., Luciani, M.F., Chimini, G., Kaminski, W.E., and Schmitz, G. (1999). Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): Evidence for sterol-dependent regulation in macrophages. Biochemical and Biophysical Research Communications 257, 29-33.
Lawn, R.M., Wade, D.P., Couse, T.L., and Wilcox, J.N. (2001). Localization of human ATP-binding cassette transporter 1 (ABC1) in normal and atherosclerotic tissues. Arteriosclerosis Thrombosis and Vascular Biology 21, 378-385.
Lawn, R.M., Wade, D.P., Garvin, M.R., Wang, X.B., Schwartz, K., Porter, J.G., Seilhamer, J.J., Vaughan, A.M., and Oram, J.F. (1999). The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. Journal of Clinical Investigation 104, R25-R31.
Le Goff, W., Peng, D.Q., Settle, M., Brubaker, G., Morton, R.E., and Smith, J.D. (2004). Cyclosporin A traps ABCA1 at the plasma membrane and inhibits ABCA1-mediated lipid efflux to apolipoprotein A-I. Arteriosclerosis Thrombosis and Vascular Biology 24, 2155-2161.
Lee, M.H., Lu, K., Hazard, S., Yu, H.W., Shulenin, S., Hidaka, H., Kojima, H., Allikmets, R., Sakuma, N., Pegoraro, R., et al. (2001). Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nature Genetics 27, 79-83.
Li, S.W., Seitz, R., and Lisanti, M.P. (1996). Phosphorylation of caveolin by Src tyrosine kinases - The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. Journal of Biological Chemistry 271, 3863-3868.
Li, W.P., Liu, P.S., Pilcher, B.K., and Anderson, R.G.W. (2001). Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. Journal of Cell Science 114, 1397-1408.
Liao, H.L., Langmann, T., Schmitz, G., and Zhu, Y. (2002). Native LDL upregulation of ATP-binding cassette transporter-1 in human vascular endothelial cells. Arteriosclerosis Thrombosis and Vascular Biology 22, 127-132.
Lin, Y.C., Ma, C., Hsu, W.C., Lo, H.F., and Yang, V.C. (2007). Molecular interaction between caveolin-1 and ABCA1 on high-density lipoprotein-mediated cholesterol efflux in aortic endothelial cells. Cardiovascular Research 75, 575-583.
Ling, V. (1997). Multidrug resistance: Molecular mechanisms and clinical relevance. Cancer Chemotherapy and Pharmacology 40, S3-S8.
Liu, P.S., Li, W.P., Machleidt, T., and Anderson, R.G.W. (1999). Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nature Cell Biology 1, 369-375.
Liu, P.S., Rudick, M., and Anderson, R.G.W. (2002). Multiple functions of caveolin-1. Journal of Biological Chemistry 277, 41295-41298.
Luciani, M.F., Denizot, F., Savary, S., Mattei, M.G., and Chimini, G. (1994). Cloning of 2 Novel Abc Transporters Mapping on Human-Chromosome-9. Genomics 21, 150-159.
Luetterforst, R., Stang, E., Zorzi, N., Carozzi, A., Way, M., and Parton, R.G. (1999). Molecular characterization of caveolin association with the Golgi complex: Identification of a cis-Golgi targeting domain in the caveolin molecule. Journal of Cell Biology 145, 1443-1459.
Machleidt, T., Li, W.P., Liu, P.S., and Anderson, R.G.W. (2000). Multiple domains in caveolin-1 control its intracellular traffic. Journal of Cell Biology 148, 17-28.
Martinez, L.O., Jacquet, S., Terce, F., Collet, X., Perret, B., and Barbaras, R. (2004). New insight on the molecular mechanisms of high-density lipoprotein cellular interactions. Cellular and Molecular Life Sciences 61, 2343-2360.
Matveev, S., Uittenbogaard, A., van der Westhuyzen, D., and Smart, E.J. (2001). Caveolin-1 negatively regulates SR-BI mediated selective uptake of high-density lipoprotein-derived cholesteryl ester. European Journal of Biochemistry 268, 5609-5616.
Maxfield, F.R., and Wustner, D. (2002). Intracellular cholesterol transport. Journal of Clinical Investigation 110, 891-898.
Mazzone, T., Krishna, M., and Lange, Y. (1995). Progesterone blocks intracellular translocation of free-cholesterol derived from cholesteryl ester in macrophages. Journal of Lipid Research 36, 544-551.
Mendez, A.J., Lin, G.R., Wade, D.P., Lawn, R.M., and Oram, J.F. (2001). Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. Journal of Biological Chemistry 276, 3158-3166.
Mendez, A.J., Oram, J.F., and Bierman, E.L. (1991). Protein-kinase-C as a mediator of high-density-lipoprotein receptor-dependent efflux of intracellular cholesterol. Journal of Biological Chemistry 266, 10104-10111.
Mollenhauer, H.H., Morre, D.J., and Rowe, L.D. (1990). Alteration of intracellular traffic by monensin - mechanism, specificity and relationship to toxicity. Biochimica Et Biophysica Acta 1031, 225-246.
Monier, S., Parton, R.G., Vogel, F., Behlke, J., Henske, A., and Kurzchalia, T.V. (1995). Vip21-caveolin, a membrane-protein constituent of the caveolar coat, oligomerizes in-vivo and in-vitro. Molecular Biology of the Cell 6, 911-927.
Morre, D.J., Boss, W.F., Grimes, H., and Mollenhauer, H.H. (1983). Kinetics of Golgi-apparatus membrane flux following monensin treatment of embryogenic carrot cells. European Journal of Cell Biology 30, 25-32.
Murata, M., Peranen, J., Schreiner, R., Wieland, F., Kurzchalia, T.V., and Simons, K. (1995). Vip21/Caveolin Is a Cholesterol-Binding Protein. Proceedings of the National Academy of Sciences of the United States of America 92, 10339-10343.
Nagornev, V.A., and Rabinovich, V.S. (1998). Can endothelial cells accumulate lipids? Atherosclerosis 136, 197-198.
Neufeld, E.B., Remaley, A.T., Demosky, S.J., Stonik, J.A., Cooney, A.M., Comly, M., Dwyer, N.K., Zhang, M., Blanchette-Mackie, J., Santamarina-Fojo, S., et al. (2001). Cellular localization and trafficking of the human ABCA1 transporter. Journal of Biological Chemistry 276, 27584-27590.
Neufeld, E.B., Stonik, J.A., Demosky, S.J., Knapper, C.L., Combs, C.A., Cooney, A., Comly, M., Dwyer, N., Blanchette-Mackie, J., Remaley, A.T., et al. (2004). The ABCA1 transporter modulates late endocytic trafficking - Insights from the correction of the genetic defect in Tangier Disease. Journal of Biological Chemistry 279, 15571-15578.
Niki, E. (2004). Antioxidants and atherosclerosis. Biochemical Society Transactions 32, 156-159.
O'Connell, B.J., Denis, M., and Genest, J. (2004). Cellular physiology of cholesterol efflux in vascular endothelial cells. Circulation 110, 2881-2888.
Okuhira, K., Fitzgerald, M.L., Sarracino, D.A., Manning, J.J., Bell, S.A., Goss, J.L., and Freeman, M.W. (2005). Purification of ATP-binding cassette transporter A1 and associated binding proteins reveals the importance of beta 1-syntrophin in cholesterol efflux. Journal of Biological Chemistry 280, 39653-39664.
Oram, J.F. (2002a). ATP-binding cassette transporter A1 and cholesterol trafficking. Current Opinion in Lipidology 13, 373-381.
Oram, J.F. (2002b). Molecular basis of cholesterol homeostasis: lessons from Tangier disease and ABCA1. Trends in Molecular Medicine 8, 168-173.
Oram, J.F., Brinton, E.A., and Bierman, E.L. (1983). Regulation of high-density lipoprotein receptor activity in cultured human-skin fibroblasts and human arterial smooth-muscle cells. Journal of Clinical Investigation 72, 1611-1621.
Oram, J.F., Johnson, C.J., and Brown, T.A. (1987). Interaction of high-density-lipoprotein with its receptor on cultured fibroblasts and macrophages - Evidence for reversible binding at the cell-surface without internalization. Journal of Biological Chemistry 262, 2405-2410.
Orso, E., Broccardo, C., Kaminski, W.E., Bottcher, A., Liebisch, G., Drobnik, W., Gotz, A., Chambenoit, O., Diederich, W., Langmann, T., et al. (2000). Transport of lipids from Golgi to plasma membrane is defective in Tangier disease patients and Abc1-deficient mice. Nature Genetics 24, 192-196.
Osborne, T.F. (2001). CREating a SCAP-less liver keeps SREBPs pinned in the ER membrane and prevents increased lipid synthesis in response to low cholesterol and high insulin. Genes & Development 15, 1873-1878.
Palade, G.E. (1953). Fine structure of blood capillaries. J Appl Phys 24, 1424.
Parton, R.G., Hanzal-Bayer, M., and Hancock, J.F. (2006). Biogenesis of caveolae: a structural model for caveolin-induced domain formation. Journal of Cell Science 119, 787-796.
Parton, R.G., and Simons, K. (2007). The multiple faces of caveolae. Nature Reviews Molecular Cell Biology 8, 185-194.
Patel, V.I., Daniel, S., Longo, C.R., Shrikhande, G.V., Scali, S.T., Czismadia, E., Groft, C.M., Shukri, T., Motley-Dore, C., Ramsey, H.E., et al. (2006). A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. Faseb Journal 20, 1418-1430.
Peng (2004). Scavenger receptor BI (SR-BI) clustered on microvillar extensions suggests that this plasma membrane domain is a way station for cholesterol trafficking between cells and high-density lipoprotein. Molecular Biology of the Cell 15, 384-396.
Pol, A., Martin, S., Fernandez, M.A., Ingelmo-Torres, M., Ferguson, C., Enrich, C., and Parton, R.G. (2005). Cholesterol and fatty acids regulate dynamic caveolin trafficking through the golgi complex and between the cell surface and lipid bodies. Molecular Biology of the Cell 16, 2091-2105.
Rao, R.M., Yang, L., Garcia-Cardena, G., and Luscinskas, F.W. (2007). Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circulation Research 101, 234-247.
Razani, B., Wang, X.B., Engelman, J.A., Battista, M., Lagaud, G., Zhang, X.L., Kneitz, B., Hou, H., Christ, G.J., Edelmann, W., et al. (2002). Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Molecular and Cellular Biology 22, 2329-2344.
Reaven, E., Tsai, L., and Azhar, S. (1996). Intracellular events in the ''selective'' transport of lipoprotein-derived cholesteryl esters. Journal of Biological Chemistry 271, 16208-16217.
Ren, X.Y., Ostermeyer, A.G., Ramcharan, L.T., Zeng, Y.C., Lublin, D.M., and Brown, D.A. (2004). Conformational defects slow Golgi exit, block oligomerization, and reduce raft affinity of caveolin-1 mutant proteins. Molecular Biology of the Cell 15, 4556-4567.
Robenek, H., and Schmitz, G. (1991). Abnormal processing of Golgi elements and lysosomes in Tangier disease. Arteriosclerosis and Thrombosis 11, 1007-1020.
Ross, R. (1999). Atherosclerosis is an inflammatory disease. American Heart Journal 138, S419-S420.
Rothblat GH, B.M., Phillips MC. (1986). Reverse cholesterol transport. In: Albers J, Segrest J, eds. . Methods in Enzymology 129, 629-644.
Ruetz, S., and Gros, P. (1994). Phosphatidylcholine translocase - a physiological-role for the mdr2 gene. Cell 77, 1071-1081.
Rust, S., Rosier, M., Funke, H., Real, J., Amoura, Z., Piette, J.C., Deleuze, J.F., Brewer, H.B., Duverger, N., Denefle, P., et al. (1999). Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genetics 22, 352-355.
Sargiacomo, M., Scherer, P.E., Tang, Z.L., Kubler, E., Song, K.S., Sanders, M.C., and Lisanti, M.P. (1995). Oligomeric structure of caveolin - Implications for caveolae membrane organization. Proceedings of the National Academy of Sciences of the United States of America 92, 9407-9411.
Sargiacomo, M., Sudol, M., Tang, Z.L., and Lisanti, M.P. (1993). Signal-Transducing Molecules and Glycosyl-Phosphatidylinositol-
Linked Proteins Form a Caveolin-Rich Insoluble Complex in Mdck Cells. Journal of Cell Biology 122, 789-807.
Sawamura, T., Kume, N., Aoyama, T., Moriwaki, H., Hoshikawa, H., Aiba, Y., Tanaka, T., Miwa, S., Katsura, Y., Kita, T., et al. (1997). An endothelial receptor for oxidized low-density lipoprotein. Nature 386, 73-77.
Scherer, P.E., Lewis, R.Y., Volonte, D., Engelman, J.A., Galbiati, F., Couet, J., Kohtz, D.S., vanDonselaar, E., Peters, P., and Lisanti, M.P. (1997). Cell-type and tissue-specific expression of caveolin-2 - Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. Journal of Biological Chemistry 272, 29337-29346.
Scherer, P.E., Okamoto, T., Chun, M.Y., Nishimoto, I., Lodish, H.F., and Lisanti, M.P. (1996). Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proceedings of the National Academy of Sciences of the United States of America 93, 131-135.
Schlegel, A., and Lisanti, M.P. (2000). A molecular dissection of caveolin-1 membrane attachment and oligomerization - Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. Journal of Biological Chemistry 275, 21605-21617.
Schwartz, K., Lawn, R.M., and Wade, D.P. (2000). ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. Biochemical and Biophysical Research Communications 274, 794-802.
Sessa, W.C. (2005). Regulation of endothelial derived nitric oxide in health and disease. Memorias Do Instituto Oswaldo Cruz 100, 15-18.
Singaraja, R.R., Visscher, H., James, E.R., Chroni, A., Coutinho, J.M., Brunham, L.R., Kang, M.H., Zannis, V.I., Chimini, G., and Hayden, M.R. (2006). Specific mutations in ABCA1 have discrete effects on ABCA1 function and lipid phenotypes both in vivo and in vitro. Circulation Research 99, 389-397.
Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., Okamoto, T., and Lisanti, M.P. (1999). Caveolins, liquid-ordered domains, and signal transduction. Molecular and Cellular Biology 19, 7289-7304.
Smart, E.J., Ying, Y.S., Donzell, W.C., and Anderson, R.G.W. (1996). A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. Journal of Biological Chemistry 271, 29427-29435.
Smith, J.D. (2006). Insight into ABCG1-mediated cholesterol efflux. Arteriosclerosis Thrombosis and Vascular Biology 26, 1198-1200.
Smith, J.D., Le Goff, W., Settle, M., Brubaker, G., Waelde, C., Horwitz, A., and Oda, M.N. (2004). ABCA1 mediates concurrent cholesterol and phospholipid efflux to apolipoprotein A-I. Journal of Lipid Research 45, 635-644.
Song, K.S., Tang, Z.L., Li, S.W., and Lisanti, M.P. (1997). Mutational analysis of the properties of caveolin-1 - A novel role for the C-terminal domain in mediating homo-typic caveolin-caveolin interactions. Journal of Biological Chemistry 272, 4398-4403.
Stanley, J.R., Woodley, D.T., Katz, S.I., and Martin, G.R. (1982). Structure and function of basement-membrane. Journal of Investigative Dermatology 79, S69-S72.
Storey, S.M., Gallegos, A.M., Atshaves, B.P., McIntosh, A.L., Martin, G.G., Parr, R.D., Landrock, K.K., Mer, A.B., Ball, J.M., and Schroeder, F. (2007). Selective cholesterol dynamics between lipoproteins and caveolae/lipid rafts. Biochemistry 46, 13891-13906.
Sviridov, D., Fidge, N., Beaumier-Gallon, G., and Fielding, C. (2001). Apolipoprotein A-I stimulates the transport of intracellular cholesterol to cell-surface cholesterol-rich domains (caveolae). Biochemical Journal 358, 79-86.
Tagawa, A., Mezzacasa, A., Hayer, A., Longatti, A., Pelkmans, L., and Helenius, A. (2005). Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. Journal of Cell Biology 170, 769-779.
Tahir, S.A., Ren, C.Z., Timme, T.L., Gdor, Y., Hoogeveen, R., Morrisett, J.D., Frolov, A., Ayala, G., Wheeler, T.M., and Thompson, T.C. (2003). Development of an immunoassay for serum caveolin-1: A novel biomarker for prostate cancer. Clinical Cancer Research 9, 3653-3659.
Tall, A.R. (1998). An overview of reverse cholesterol transport. European Heart Journal 19, A31-A35.
Tall, A.R., Costet, P., and Wang, N. (2002). Regulation and mechanisms of macrophage cholesterol efflux. Journal of Clinical Investigation 110, 899-904.
Tang, Z.L., Okamoto, T., Boontrakulpoontawee, P., Katada, T., Otsuka, A.J., and Lisanti, M.P. (1997). Identification, sequence, and expression of an invertebrate caveolin gene family from the nematode Caenorhabditis elegans - Implications for the molecular evolution of mammalian caveolin genes. Journal of Biological Chemistry 272, 2437-2445.
Tang, Z.L., Scherer, P.E., Okamoto, T., Song, K., Chu, C., Kohtz, D.S., Nishimoto, I., Lodish, H.F., and Lisanti, M.P. (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. Journal of Biological Chemistry 271, 2255-2261.
Uittenbogaard, A., Ying, Y.S., and Smart, E.J. (1998). Characterization of a cytosolic heat-shock protein caveolin chaperone complex - Involvement in cholesterol trafficking. Journal of Biological Chemistry 273, 6525-6532.
Vaughan, A.M., and Oram, J.F. (2005). ABCG1 redistributes cell cholesterol to domains removable by high density lipoprotein but not by lipid-depleted apolipoproteins. Journal of Biological Chemistry 280, 30150-30157.
Vedhachalam, C., Ghering, A.B., Davidson, W.S., Lund-Katz, S., Rothblat, G.H., and Phillips, M.C. (2007). ABCA1-induced cell surface binding sites for ApoA-I. Arteriosclerosis Thrombosis and Vascular Biology 27, 1603-1609.
Volonte, D., Galbiati, F., Li, S.W., Nishiyama, K., Okamoto, T., and Lisanti, M.P. (1999). Flotillins/cavatellins are differentially expressed in cells and tissues and form a hetero-oligomeric complex with caveolins in vivo - Characterization and epitope-mapping of a novel flotillin-1 monoclonal antibody probe. Journal of Biological Chemistry 274, 12702-12709.
Wang, L.B., Connelly, M.A., Ostermeyer, A.G., Chen, H.H., Williams, D.L., and Brown, D.A. (2003). Caveolin-1 does not affect SR-BI-mediated cholesterol efflux or selective uptake of cholesteryl ester in two cell lines. Journal of Lipid Research 44, 807-815.
Wang, N., Lan, D.B., Chen, W.G., Matsuura, F., and Tall, A.R. (2004). ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proceedings of the National Academy of Sciences of the United States of America 101, 9774-9779.
Wang, N., Ranalletta, M., Matsuura, F., Peng, F., and Tall, A.R. (2006). LXR-induced redistribution of ABCG1 to plasma membrane in macrophages enhances cholesterol mass efflux to HDL. Arteriosclerosis Thrombosis and Vascular Biology 26, 1310-1316.
Wang, N., Silver, D.L., Costet, P., and Tall, A.R. (2000). Specific binding of apoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. Journal of Biological Chemistry 275, 33053-33058.
Wang, N., Silver, D.L., Thiele, C., and Tall, A.R. (2001). ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. Journal of Biological Chemistry 276, 23742-23747.
Wellington, C.L., Walker, E.K.Y., Suarez, A., Kwok, A., Bissada, N., Singaraja, R., Yang, Y.Z., Zhang, L.H., James, E., Wilson, J.E., et al. (2002). ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Laboratory Investigation 82, 273-283.
Wu, C.A., Tsujita, M., Hayashi, M., and Yokoyama, S. (2004). Probucol inactivates ABCA1 in the plasma membrane with respect to its mediation of apolipoprotein binding and high density lipoprotein assembly and to its proteolytic degradation. Journal of Biological Chemistry 279, 30168-30174.
Yamada, E. (1955). The fine structure of the gall bladder of the mouse. J Biophys Biochem Cytol 1, 445-458.
Yamauchi, Y., Chang, C.C.Y., Hayashi, M., Abe-Dohmae, S., Reid, P.C., Chang, T.Y., and Yokoyama, S. (2004). Intracellular cholesterol mobilization involved in the ABCA1/apolipoprotein-mediated assembly of high density lipoprotein in fibroblasts. Journal of Lipid Research 45, 1943-1951.
Yamauchi, Y., Hayashi, M., Abe-Dohmae, S., and Yokoyama, S. (2003). Apolipoprotein A-I activates protein kinase C alpha signaling to phosphorylate and stabilize ATP binding cassette transporter A1 for the high density lipoprotein assembly. Journal of Biological Chemistry 278, 47890-47897.
Yancey, P.G., Bortnick, A.E., Kellner-Weibel, G., de la Llera-Moya, M., Phillips, M.C., and Rothblat, G.H. (2003). Importance of different pathways of cellular cholesterol efflux. Arteriosclerosis Thrombosis and Vascular Biology 23, 712-719.
Yancey, P.G., de la Llera-Moya, M., Swarnakar, S., Monzo, P., Klein, S.M., Connelly, M.A., Johnson, W.J., Williams, D.L., and Rothblat, G.H. (2000). High density lipoprotein phospholipid composition is a major determinant of the bi-directional flux and net movement of cellular free cholesterol mediated by scavenger receptor BI. Journal of Biological Chemistry 275, 36596-36604.
Yang, T., Espenshade, P.J., Wright, M.E., Yabe, D., Gong, Y., Aebersold, R., Goldstein, J.L., and Brown, M.S. (2002). Crucial step in cholesterol homeostasis: Sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 110, 489-500.
Yao, Q., Chen, J., Cao, H., Orth, J.D., McCaffery, J.M., Stan, R.V., and McNiven, M.A. (2005). Caveolin-1 interacts directly with dynamin-2. Journal of Molecular Biology 348, 491-501.
Yeh, Y.C., Hwang, G.Y., Liu, I.P., and Yang, V.C. (2002). Identification and expressions of scavenger receptor SR-BI in endothelial cells and smooth muscle cells of rat aorta in, vitro and in vivo. Atherosclerosis 161, 95-103.
Young, S.G., and Fielding, C.J. (1999). The ABCs of cholesterol efflux. Nature Genetics 22, 316-318.
Zha, X.H., Gauthier, A., Genest, J., and McPherson, R. (2003). Secretory vesicular transport from the Golgi is altered during ATP-binding cassette protein A1 (ABCA1)-mediated cholesterol efflux. Journal of Biological Chemistry 278, 10002-10005.
Zha, X.H., Genest, J., and McPherson, R. (2001). Endocytosis is enhanced in Tangier fibroblasts - Possible role of ATP-binding cassette protein A1 in endosomal vesicular transport. Journal of Biological Chemistry 276, 39476-39483.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 高密度脂蛋白在含大量膽固醇的動脈內皮細胞中與caveolin-1及ABCA1的作用方式
2. Caveolin-1蛋白與粥瘤形成的關係並可能成為早期動脈硬化的生物指標分子
3. 動脈粥狀硬化過程中保護因子之研究I.β2-glycoproteinI基因上游5'端調控區之選殖與功能鑑定,II.探討多元不飽和枝防酸及中草藥活化過氧化酶體增生活化接受器之作用機制王學孝著
4. 茄紅素可促進PPARγ-LXRα-ABCA1之途徑而抑制男性荷爾蒙非依賴型前列腺癌細胞之生長
5. 內皮細胞素、一氧化氮合成酵素及過氧小體增生活化受體在皮質酮處理之內皮細胞的調控
6. Coniothyrium sp. 培養液萃取物抗細胞增生之效力
7. 高葡萄糖抑制內皮源性過極化因子所調控的冠狀小動脈擴張機制
8. 甲型硫辛酸經肝X受體α正向調節三磷酸腺苷結合轉運體蛋白A1和G1而改善泡沫細胞的形成
9. 高血糖壓力下對ABCA1基因表現之探討
10. 薑黃素預防泡沫細胞之形成是經由降低A型清除接受體的蛋白表現及提升三腺甘酸結合性傳輸蛋白A1的蛋白表現
11. 高遷移率族蛋白負向調節脂肪細胞之脂質水解作用:第一型小窩蛋白的角色
12. 利用奈米光觸媒處理傳統市場之生物氣膠
13. 共軛亞麻油酸對小鼠組織維生素 E 含量之影響及機制探討
14. 綠茶萃取物益多酚預防泡沫細胞之形成是經由降低A型清除接受體的蛋白表現及提升三腺甘酸結合性傳輸蛋白的蛋白表現
15. 台灣眼鏡蛇心臟毒素之胞吞機制及其對心肌細胞之毒性影響
 
系統版面圖檔 系統版面圖檔