(3.238.186.43) 您好!臺灣時間:2021/02/28 12:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雅紋
研究生(外文):Ya-Wun Chen
論文名稱:亞麻籽中酚類化合物之萃取、轉換及其抗氧化活性之評估
論文名稱(外文):Extraction and Conversion of Phenolic Compounds from Flaxseed and Assessment of Their Antioxidative Activities
指導教授:江文德江文德引用關係黃進發黃進發引用關係
指導教授(外文):Wen-Dee ChiangChin-Fa Hwang
學位類別:碩士
校院名稱:東海大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:104
中文關鍵詞:木酚素酚類化合物酵素轉換抗氧化活性
外文關鍵詞:lignansphenolic compoundsenzyme conversionantioxidative activities
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1443
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:261
  • 收藏至我的研究室書目清單書目收藏:0
本研究分別以水萃取、乙醇萃取、鹼處理、熱處理和酵素水解等方法從脫脂亞麻籽粉末中萃製酚類化合物,所得萃取物分別為pd 1、pd 2、pd 3、pd 4和pd 5。依據HPLC分析結果顯示,pd 1及pd 2不含游離態的酚類化合物,pd 3及pd 4以配醣體的酚類化合物coumaric acid glucoside (CAG)、ferulic acid glucoside (FAG)和secoisolariciresinol diglycoside (SDG)為主,以pd 3總含量較高,pd 5以去醣基的酚類化合物coumaric acid (CA)、ferulic acid (FA)和secoisolariciresinol (SECO)為主。其次,依據比色分析總酚類化合物的結果顯示,pd 2的總酚含量最高,以木酚素及酚類化合物之複合物形式存在,約31.70 mg gallic acid equivalent/g dry matter,其他依次為pd 3、pd 1、pd 5和pd 4。本研究利用Trolox當量的抗氧化能力(TEAC)、螯合亞鐵離子能力、還原力、清除氫氧自由基、清除超氧陰離子能力及抑制脂質氫過氧化物生成能力等比較此5種萃取物的抗氧化活性;TEAC測定的結果顯示,此5種萃取物皆具有清除ABTS+陽離子自由基能力,樣品溶液在200 μg/mL濃度下其TEAC介於30.52–140.84 μM,以pd 2為最高,而pd 4為最低,此結果與總酚類化合物含量成正相關,且pd 2在200 μg/mL濃度下,其抗氧化能力相當於25.98 μg/mL之BHT及30.89 μg/mL之Vit. C;螯合亞鐵離子能力的結果顯示,所有萃取物皆具有螯合能力,樣品溶液在250 μg/mL濃度下其螯合力介於8.73–84.60%,以pd 4為最高,而pd 2為最低,且pd 4在200 μg/mL濃度時已維持穩定,其螯合能力可達85.14%,相當於109.30 μg/mL之EDTA的螯合能力。但就還原力、清除氫氧自由基及超氧陰離子能力而言,所有萃取物之效果均不明顯。此外,在亞麻油酸乳化液系統中,所有萃取物添加濃度為250 μg/mL時,於48小時測定其脂質氧化的抑制率仍然都維持90%以上,其中pd 3與同濃度下BHT之抑制率相近;當添加濃度為50 μg/mL時,其抑制率由大至小依序為BHT>pd 2>pd 1>pd 4=pd 3=pd 5,前四者於48小時的抑制率分別為97.82%、82.91%、45.81%及3.20%。
In this study, several methods have been applied to prepare extracts from defatted flaxseed flour (DFF). The extracts obtained from water extraction, ethanol extraction, alkali treatment, heat treatment and enzyme hydrolysis of DFF were denotes as pd 1, pd 2, pd 3, pd 4 and pd 5, respectively. Based on HPLC analysis, the results indicated that both pd 1 and pd 2 had no free form phenolic compounds, both pd 3 and pd 4 contained mainly coumaric acid glucoside (CAG), ferulic acid glucoside (FAG) and secoisolariciresinol diglycoside (SDG), pd 5 contained mainly coumaric acid (CA), ferulic acid (FA) and secoisolariciresinol (SECO). Furthermore, based on colorimetric analysis of total phenolic compounds (TPC), pd 2 had the highest TPC than others, followed by pd 3, pd 1, pd 5 and finally pd 4. The pd 2 contained 31.70 mg gallic acid equivalent/g dry matter. The phenolic compounds of pd 2 existed in a complex form containing lignan, phenolic and aliphatic compounds. Each extract was also evaluated its antioxidant activities including trolox equivalent antioxidant capacity (TEAC) assay, ferrous ion chelating, reducing activity, hydroxyl radical scavenging, superoxide anion radical scavenging and lipid peroxidation inhibition. The TEAC results showed that all extracts exhibited ABTS radical scavenging effect. The TEAC values ranged from 30.52 to 140.84 μM trolox equivalent at a concentration of 200 μg/mL. The highest was pd 2, whereas the lowest was pd 4. There was a positive linear relationship between antioxidant activity and total phenolic compounds. The result indicated that phenolic compounds were the dominant antioxidant components in the extracts. Again, the antioxidant capacity of 200 μg/mL pd 2 was equal to 25.98 μg/mL BHT and 30.89 μg/mL vitamin C, respectively. In addition, all five extracts were shown to exhibit ferrous ion chelating capacities. The chelating capacities ranged from 8.73 to 84.69% at a concentration of 250 μg/mL. The highest was pd 4, whereas the lowest was pd 2. Also, the chelating capacity of 200 μg/mL pd 4 was 85.14% and equal to 109.30 μg/mL EDTA. However, all extracts were far less active in reducing activity, hydroxyl radical scavenging and superoxide anion radical scavenging assays. Moreover, inhibiting lipid peroxidation reactions of linoleic acid emulsion were measured according to ferric thiocyanate method. All extracts showed to be greater than 90% inhibition of lipid peroxidation at a concentration of 250 μg/mL after 48h of incubation. Also, the effect of pd 3 was equivalent to BHT at the same concentration. On the other hand, at the relatively low concentration (i.e. 50 μg/mL), the antioxidant activities of five extracts and BHT followed the order: BHT > pd 2 > pd 1 > pd 4 = pd 3 = pd 5. Percentage of inhibition of the top four was 97.82, 82.91, 45.81 and 3.20%, respectively.
目錄
中文摘要 I
英文摘要 III
目錄 V
表次 IX
圖次 X
附錄 XII
壹、前言 1
貳、文獻回顧 3
一、亞麻籽簡介 3
(一) 形態、品種及分布 3
(二) 組成分及功能 4
(三) 應用 6
二、亞麻籽中的木酚素及酚類化合物 6
(一) 木酚素之來源及結構 6
(二) 亞麻籽中的其他酚類化合物 12
(三) 木酚素的吸收及代謝 14
(四) 木酚素促進健康的可能機制 16
三、脫脂亞麻籽萃取物之製備 19
四、木酚素及其他酚酸之分析方法 20
五、抗氧化之評估 21
(一) 自由基、活性氧及活性氮對生物體之影響 21
(二) 抗氧化劑之作用機制 22
1. 自由基抑制劑 (free radical inhibitor) 23
2. 還原劑或氧清除劑 (oxygens scavenger) 23
3. 金屬螯合劑 (metal chelator) 23
4. 單重態氧抑制劑 (singlet oxygen inhibitor) 24
5. 過氧化分解劑 (peroxide decomposer) 24
(三) 抗氧化活性之測定 24
1. Trolox當量抗氧化能力(TEAC)之測定 24
2. 螯合亞鐵離子能力之測定 25
3. 還原力之測定 25
4. 氫氧自由基清除能力之測定 26
5. 超氧陰離子(SOD-like)清除能力之測定 26
6. 抑制脂質氫過氧化物生成之測定 27
(四) 天然抗氧化劑 (natural antioxidants) 27
參、材料與方法 28
一、實驗材料與藥品 28
二、儀器設備 30
(一) 脫脂所需之儀器設備 30
(二) 萃取及水解脫脂亞麻籽粉末所需之儀器設備 30
(三) 高效能液相層析儀 (HPLC) 30
(四) 總酚類化合物含量及抗氧化性測定所需之儀器設備 31
三、實驗方法 31
(一) 脫脂亞麻籽粉末的製備 31
(二) DFF萃取物的製備 32
1. 水溶性萃取物 (pd 1) 32
2. 乙醇萃取物 (pd 2) 32
3. 鹼甲醇萃取物 (pd 3) 32
4. 熱處理甲醇萃取物 (pd 4) 34
(1) 熱處理條件之探討 34
(2) 熱處理甲醇萃取物的製備 34
5. pd 2之酵素水解產物 34
6. 鹼甲醇萃取物之酵素水解產物 (pd 5) 36
(1) 配醣體去除醣基之酵素篩選 36
(2) 以β-glucuronidase from Helix pomatia (HP-2)進行酵素水解 36
(3) 所篩選到的酵素與HP-2作比較 37
(4) 以不同的En 4酵素濃度進行酵素水解 37
(5) 鹼甲醇萃取物之酵素水解產物的製備 37
(三) DFF萃取物中木酚素及其他酚類化合物含量之測定 38
(四) DFF萃取物中總酚類化合物含量之測定 39
(五) DFF萃取物中抗氧化活性之測定 39
1. Trolox當量抗氧化能力(TEAC)之測定 39
2. 螯合亞鐵離子能力之測定 40
3. 還原力之測定 40
4. 氫氧自由基清除能力之測定 40
5. 超氧陰離子(SOD-like)清除能力之測定 41
6. 抑制脂質氫過氧化物生成之測定 41
四、統計分析 42
肆、結果與討論 43
一、脫脂亞麻籽粉末(DFF)的製備 43
二、DFF萃取物的製備條件探討 43
(一) pd 4製備條件探討 43
1. 熱處理條件之探討 45
2. 酵素處理條件之探討 48
(二) pd 5製備條件探討 50
1. 配醣體去除醣基之酵素篩選 51
2. HP-2去醣基的效率 55
3. 比較所篩選到的酵素En 4與HP-2之去醣基效率 60
4. 不同的En 4酵素濃度對DFF及pd 3之影響 62
三、五種DFF萃取物中酚類化合物及總酚類化合物之含量 64
四、五種DFF萃取物之抗氧化活性 67
(一) Trolox當量的抗氧化能力(Trolox equivalent antioxidant capacity; TEAC) 67
(二) 螯合亞鐵離子之能力 69
(三) 還原力 74
(四) 清除氫氧自由基及超氧陰離子自由基之能力 77
(五) 抑制脂質氫過氧化物生成之能力 79
伍、結論 84
陸、參考文獻 86
柒、附錄 100

表次
表一、酵素之特性 35
表二、脫脂亞麻籽粉末之製備 44
表三、利用不同酵素水解脫脂亞麻籽鹼萃物對其酚類化合物濃度之影響 52
表四、利用不同濃度的En 4及En 8水解脫脂亞麻籽粉末或脫脂亞麻籽鹼甲醇萃取物對其酚類化合物濃度之影響 54
表五、利用β-glucuronidase水解脫脂亞麻籽粉末或脫脂亞麻籽鹼甲醇萃取物對其酚類化合物濃度之影響 57
表六、利用不同濃度的En 1及HP-2水解脫脂亞麻籽粉末或脫脂亞麻籽鹼甲醇萃取物對其酚類化合物濃度之影響 59
表七、利用不同濃度的En 4及HP-2水解脫脂亞麻籽鹼甲醇萃取物對其酚類化合物濃度之影響 61
表八、利用不同濃度的En 4水解脫脂亞麻籽粉末或脫脂亞麻籽鹼甲醇萃取物對其酚類化合物濃度之影響 63
表九、DFF萃取物中酚類化合物及總酚類化合物之含量 66
表十、DFF萃取物在200 μg/mL濃度下之BHT及Vit. C當量的抗氧化能力 72
表十一、不同濃度DFF萃取物、BHT及Vit. C之清除氫氧自由基與超氧陰離子自由基能力 78

圖次
圖一、木酚素的基本架構 7
圖二、亞麻籽中之植物木酚素 8
圖三、亞麻籽木酚素寡聚合物的結構 10
圖四、哺乳類木酚素前驅物SDG及matairesinol經由腸道微生物菌群轉換成enterodiol及enterolactone 11
圖五、Coumaric acid glucoside、ferulic acid glucoside及caffeic acid glucoside之結構式 13
圖六、植物木酚素在人類體內的腸肝循環 15
圖七、脫脂亞麻籽粉末萃取物的製備及抗氧化活性測定之流程圖 33
圖八、不同溫度及pH值對脫脂亞麻籽粉末中SDG釋放率之影響.. 46
圖九、在pH 9、80℃下加熱時間對脫脂亞麻籽粉末中SDG釋放率之影響 47
圖十、不同酵素處理對脫脂亞麻乙醇萃取物中SDG釋放率之影響.. 49
圖十一、脫脂亞麻籽萃取物溶液之高效能液相層析圖 65
圖十二、不同濃度DFF萃取物其Trolox當量的抗氧化能力 68
圖十三、不同濃度pd 1、pd 2、pd 3及pd 5其Trolox當量的抗氧化能力 70
圖十四、不同濃度BHT及Vit. C其Trolox當量的抗氧化能力 71
圖十五、不同濃度DFF萃取物、EDTA、BHT及Vit. C的螯合鐵離子之能力 73
圖十六、不同濃度EDTA的螯合亞鐵離子之能力 75
圖十七、不同濃度DFF萃取物、BHT及Vit. C的還原能力 76
圖十八、在亞麻油酸乳化液系統中不同濃度DFF萃取物、Trolox、BHT及Vit. C之抗氧化能力 80
圖十九、在亞麻油酸乳化液系統中不同濃度DFF萃取物、Trolox、BHT及Vit. C之抗氧化能力 82

附錄
附錄一、縮寫列表 100
附錄二、標準品溶液之高效能液相層析圖 101
附錄三、SDG、CA、FA之標準品檢量線 102
附錄四、在25-200 μg/mL範圍內酚類化合物之標準品檢量線 103
附錄五、脫脂亞麻籽粉末萃取物之製備 104
拱玉郎。1997。天然抗氧化劑發展近況。食品工業,29(3):29-37。
洪千雅。2000。仙草抗氧化機能性之研究。國立中興大學食品科學系博士論文。
郭悅雄。1995。自由基、活性氧與抗氧化劑。台灣科學,48(2):164-177。
Adlercreutz, H., Mousavi, Y., Clark, J., Höckerstedt, K., Hämäläinen, E., Wähälä, K., Mäkelä, T. and Hase, T. (1992). Dietary phytoestrogens and cancer: in vitro and in vivo studies. Journal of Steroid Biochemistry and Molecular Biology, 41:331-337.
Adlercreutz, H., Fotsis, T., Lampe, J., Wähälä, K., Mäkelä, T., Brunow, G. and Hase, T. (1993a). Quantitative determination of lignans and isoflavonoids in plasma of omnivorous and vegetarian women by isotope dilution gas-chromatography mass-spectrometry. Scandinavian Journal of Clinical and Laboratory Investigation, 53:5-18.
Adlercreutz, H., Bannwart, C., Wähälä, K., Mäkelä, T., Brunow, G., Hase, T., Arosemena, P.J., Kellis, J.T. and Vickery, L.E. (1993b). Inhibiton fo human aromatase by mammalian lignans and isoflavonoid phytoestrogens. Journal of Steroid Biochemistry and Molecular Biology, 44:127-153.
Adlercreutz, H., Fotsis, T., Kurzer, M.S., Wähälä, K., Mäkelä, T. and Hase, T. (1995). Isotope dilution gas chromatographic-mass spectrometric method fore the determination of unconjugated lignans and isoflavonoids in human feces, with preliminary results in omnivorous and vegetarian women. Analytical Biochemistry, 225:101-108.
Amarowicz, R., Wanasundara, U., Wanasundara, J. and Shahidi, F. (1993). Antioxidant activity of ethanolic extracts of flaxseed in a β-carotene-linoleate model system. Journal of Food Lipids, 1:111-117.
Arnao, M.B., Cano, A., Hernandez-Ruiz, J., Garcia-Canovas, F. and Acosta, M. (1996). Inhibition by L-ascorbic acid and other antioxidants of the 2,2’-Azino-bis(3-ethylbenzthiazoline-6-sulfonic Acid) oxidation catalyzed by peroxidase: a new approach for determining total antioxidant status of foods. Analytical Biochemistry, 236:255-261.
Arora, A., Nair, M.G. and Strasburg, G.M. (1998). Structure-Activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radical Biology and Medicine, 24:1355-1363.
Axelson, M. and Setchell, K.D.R. (1980). Conjugation of lignans in human urine. FEBS Letters, 122:49-53.
Axelson, M. and Setchell, K.D.R. (1981). The excretion of lignans in rats – evidence for an intestinal bacterial source for this new group of compounds. FEBS letters, 123:337-342.
Axelson, M., Sjövall, J., Gustafsson, B.E. and Setchell, K.D.R. (1982a). Origin of lignans in mammals and identification of a precursor from plants. Nature, 298:659-660.
Axelson, M., Kirk, D.N., Farrant, R.D., Cooley, G., Lawson, A.M. and Setchell, K.D.R. (1982b). The identification of the weak oestrogen equol [7-hydroxy-3-4’-hydroxyphenylchroman] in human urine. Biochemical Journal, 201:353-357.
Axelson, M., Sjovall, J., Gustafsson, B.E. and Setchell, K.D.R. (1984). Soya – a dietary source of the nonsteroidal oestrogen equol in man and animals. Journal of Endocrinology, 102:49-56.
Ayres, D.C. and Loike, J.D. (1990). Lignans: Chemical, biological, and clinical properties, Cambridge University Press, Cambridge, pp 1-11; 85-112.
Bakke, J.E. and Klosterman, H.J. (1956). A new diglucoside from flaxseed. Proceedings of the North Dakota Academy of Science, 10:18-22.
Bambagiotti-Alberti, M., Coran, S.A., Ghiara, C., Giannellini, V. and Raffaelli, A. (1994). Revealing the mammalian lignan precursor secoisolariciresinol diglucoside in flaxseed by ionspray mass-spectrometry. Rapid Communications in Mass Spectrometry, 8:595-598.
Bando, N., Hayashi, H., Wakamatsu, S., Inakuma, T., Miyoshi, M., Nagao, A., Yamauchi, R. and Terao, J. (2004). Participation of singlet oxygen in ultraviolet-a-induced lipid peroxidation in mouse skin and its inhibition by dietary β-carotene: an ex vivo study. Free Radical Biology and Medicine, 37:1854-1863.
Begum, A.N., Nicolle, C., Mila, I., Lapierre, C., Nagano, K., Fukushima, K., Heinonen, S.M., Adlercreutz, H., Rémésy, C. and Scalbert, A. (2003). Dietary lignins are precursors of mammalian lignans in rats. Journal of nutrition, 134:120-127.
BeMiller, J.N. (1973). Quince seed, psyllium seed, flaxseed and okra gums. In: R.L. Whistler and J.N. BeMiller (Eds.), Industrial gums. Academic Press, New York, pp. 331-337.
Bergendi, L., Benes, L., Durackova, Z. and Ferencik, M. (1999). Chemistry, physiology and pathology of free radicals. Life Sciences, 65:1865-1874.
Bhatty, R.S. (1997). Nutrient composition of whole flaxseed and flaxseed meal. In: S.C. Cunnane and L.U. Thompson (Eds.), Flaxseed in human nutrition. AOCS Press, Champaign, IL, pp. 22-42.
Bonorden, W.R. and Pariza, M.W. (1994). Antioxidant nutrients and protection from free radicals. In: F.N. Kostsonis, M. Mackey, and J. Hjelle (Eds.), Nutr. Toxicol. Raven press, New York, pp. 19-48.
Borrielo, S.P., Setchell, K.D.R., Axelson, M. and Lawson, A.M. (1985). Production and metabolism of lignans by the human faecal flora. Journal of applied bacteriology, 58:37-43.
Bowey, E., Adlercreutz, H. and Rowland, I. (2003). Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food and Chemical Toxicology, 41:631-636.
Cacace, J.E. and Mazza, G. (2006). Pressurized low polarity water extraction of lignans from whole flaxseed. Journal of Food Engineering, 77:1087-1095.
Catherine, A., Rice-Evans, C., Miller, N.J. and George, P. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2(4):152-159.
Cayuela-Martinez, M. (1995). Oxygen free radicals and human disease. Biochimie, 77:147-161.
Charlet, S., Bensaddek, L., Raynaud, S., Gillet, F., Mesnard, F. and Fliniaux, M.A. (2002). An HPLC method for the quantification of anhydrosecoisolariciresinol. Application to the evaluation of flax lignan content. Plant physiology and biochemistry, 40:225-229.
Chen, J., Hui, E., Ip, T. and Thompson, L.U. (2004). Dietary flaxseed enhances the inhibitory effect of tamoxifen on the growth of estrogen-dependent human breast cancer (MCF-7) in nude mice. Clinical Cancer Research, 10:7703-7711.
Chen, H.H., Xu, S.Y. and Wang, Z. (2006). Gelation properties of flaxseed gum. Journal of Food Engineering, 77:295-303.
Chung, M.W.Y., Lei, B. and Li-Chan, E.C.Y. (2005). Isolation and structural characterization of the major protein fraction from NorMan flaxseed (Linum usitatissimum L.). Food Chemistry, 90:271-279.
Coskuner, Y. and Karababa, E. (2007). Some physical properties of flaxseed (Linum usitatissimum L.). Journal of Food Engineering, 78:1067-1073.
Cui, W., Kenaschuk, E. and Mazza, G. (1996). Influence of genotype on chemical composition and rheological properties of flaxseed gums. Food Hydrocolloids, 10:221-227.
Culter, R.G. (1991). Antioxidants and aging. American Journal of Clinical Nutrition, 53:373s-379s.
Czarnecki, S.K. and Kritchevsky, D. (1992). Dietary protein and atherosclerosis. In: G.U. Liepa, D.C. Bietz, A.C. Beynen, and M.A. Gorman (Eds.), Dietary proteins: how they alleviate disease and promote better health. Champaign, American Oil Chemists’ Society, pp. 42-56.
Dabrosan, C., Chen, J., Wang, L. and Thompson, L.U. (2002). Flaxseed inhibits metastasis and decreases extracellular vascular endothelial growth factor in human breast cancer xenografts. Cancer Letter, 185:31-37.
Dabrowski, K.J. and Sosulski, F.W. (1984). Composition of free and hydolyzable acids in defatted flours of ten oilseeds. Journal of Agricultural and Food Chemistry, 32:128-130.
Daun, J.K. and DeClercq, D.R. (1994). Sixty years of Canadian flaxseed quality surveys at the Grain Research Laboratory. Proceedings Flax Institute, 55:192-200.
Degenhardt, A., Habben, S. and Winterhalter, P. (2002). Isolation of the lignan secoisolariciresinol diglucoside from flaxseed (Linum usitatissimum L.) by high-speed counter-current chromatography. Journal of chromatography A, 943:299-302.
Denis, L., Morton, M.S. and Griffiths, K. (1999). Diet and its preventive role in prostatic disease. European Urology, 35:377-387.
Di Padova, C., Bosisio, E., Cighetti, G., Rovagnati, P., Mazzocchi, M., Colombo, C. and Tritapepe, R. (1982). 3-Hydroxy-3-methylglutaric acid (HMGA) reduces dietary cholesterol induction of saturated bile in hamster. Life Sciences, 30:1907-1914.
Dinis, T.C.P., Madeira, V.M.C. and Almeida, L.M. (1994). Action of phenolic derivates (acetoaminophen, salycilate, and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315:161-169.
Dobbins, T.A. and Wiley, D.B. (2003). Process for recovering secoisolariciresinol diglycoside from de-fatted flaxseed. United States patent 20030216553.
Duh, P.D., Tu, Y.Y. and Yen, G.C. (1999). Antioxidant activity of water extract of Harng Jyur (Chyrsanthemum morifolium Ramat). Lebensmittel-Wissenschaft und-Technologie, 32:269-277.
Eliasson, C., Kamal-Eldin, A., Andersson, R. and Åman, P. (2003). High-performance liquid chromatographic analysis of secoisolariciresinol diglucoside and hydroxycinnamic acid glucosides in flaxseed by alkaline extraction. Journal of chromatography A, 1012:151-159.
Fedeniuk, R.W. and Biliaderis, C.G. (1994). Composition and physicochemical properties of linseed mucilage. Journal of Agriculture and Food Chemistry, 42, 240-247.
Freeman, T.P. (1995). Structure of flaxseed. In: S.C. Cunnane and L.U. Thompson (Eds.), Flaxseed in human nutrition. AOCS Press, Champaign, IL, pp. 11-21.
Friedman, M., Brandon, D.L., Bates, A.H. and Hymowitz, T. (1991). Comparison of a commercial soybean cultivar and an isoline lacking the Kunitz trypsin inhibitor: composition, nutritional value, and effects of heating. Journal of Agricultural and Food Chemistry, 39:327-335.
de Gaulejac, N.S.C., Provost, C. and Vivas, N. (1999). Comparative study of polyphenol scavenging activities assessed by different methods. Journal of Agricultural and Food Chemistry, 47:425-431.
Giese, J. (1996). Antioxidants: Tool for preventing lipid oxidation. Food Technology, 11:73-82.
Ghiselli, A., Nardini, M., Baldi, A. and Scaccini, C. (1998). Antioxidant activity of different phenolic fractions separated from an Italian red wine. Journal of Agricultural and Food Chemistry, 46:361-367.
Gutteridge, J.M.C. and Halliwell, B. (1994). Free radicals and antioxidants in ageing and disease: fact or fantasy. In: B. Halliwell and J.M.C. Gutteridge (Eds.), Antioxidants in nutrition, health, and disease. Oxford University press, Oxford New York Tokyo, pp. 111-135.
Haggans, C.J., Hutchins, A.M., Olson, M.A., Thomas, W., Martini, M.C. and Slavin, J.L. (1999). Effect flaxseed consumption on urinary estrogen metabolites in postmenopausal women. Nutrition and Cancer, 33:188-195.
Halliwell, B. and Gutteridge, J.M.C. (1989a). Free radicals, ageing and disease. In: B. Halliwell and J.M.C. Gutteridge (Eds.), Free Radicals in Biology and Medicine. Clarendon Press, Oxford, pp. 484-487.
Halliwell, B. and Gutteridge, J.M.C. (1989b). Free radicals and toxicology. In: B. Halliwell and J.M.C. Gutteridge (Eds.), Free Radicals in Biology and Medicine. Clarendon Press, Oxford, pp. 299-365.
Halliwell, B. and Gutteridge, J.M.C. (1990). Role of free radicals and catalytic metal ions in human disease: an overview. Methods in Enzymology, 186:1-85.
Halliwell, B. (1994). Free radicals and antioxidants: A personal view. Nutrition Reviews, 52(8):253-265.
Halliwell, B., Mutrcia, M.A., Chirico, S. and Aruoma, O. (1995). Free radicals and antioxidants in food and in vivo: what they do and how they work. Critical Reviews in Food Science and Nutrition, 35:7-20.
Harris, R.K. and Haggerty, W.J. (1993). Assays for potentially anticarcinogenic phytochemicals in Flaxseed. Cereal foods world, 38:147-151.
Heinonen, S., Nurmi, T., Liukkonen, K., Poutanen, K., Wähälä, K., Deyama, T., Nishibi, S. and Adlercreutz, H. (2001). In vitro metabolism of plant lignans: New precursors of mammalian lignans enterolactone and enterodiol. Journal of Agricultural and Food Chemistry, 49:3178-3186.
Heintzman, R. and Bennett, M.L. (2003). Process for extraction and stabilization of phytoestrogens from flaxseed and product therefrom. United States Patent 20030060420.
Hosseinian, F. (2006). Antioxidant properties of flaxseed lignans using in vitro model system. A PhD. thesis from College of Pharmacy and Nutrition, Saskatoon, University of Saskatchewan, pp. 1-257.
Hutchins, A.M., Martini, M.C., Olson, B.A., Thomas, W. and Slavin, J.L. (2000). Flaxseed influences urinary lignan excretion in a dose-dependent manner in postmenopausal women. Cancer Epidemiology Biomarkers and Prevention, 9:1113-1118.
Jenab, M. and Thompson, L.U. (1996). The influence of flaxseed and lignans on colon carcinogenesis and beta-glucuronidase activity. Carcinogenesis, 17:1343-1348.
Jenkins, D.J., Kendall, C.W., Vidgen, E., Agarwal, S., Rao, A.V., Rosenberg, R.S., Diamandis, E.P., Novokmet, R., Mehling, C.C., Perera, T., Griffin, L.C. and Cunnane, S.C. (1999). Health aspects of partially defatted flaxseed, including effects on serum lipids, oxidative measures, and ex vivo androgen and progestin activity: a controlled crossover trial. American Journal of Clinical Nutrition, 69:395-402.
Johnsson, P., Kamal-Eldin, A., Lundgren, L.N. and Ǻman, P. (2000). HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds. Journal of Agricultural and Food Chemistry, 48:5216-5219.
Johnsson, P., Peerlkamp, N., Kamal-Eldin, A., Andersson, R.E., Andersson, R., Lundgren, L.N. and Åman, P. (2002). Polymeric fractions containing phenol glucosides in flaxseed. Food chemistry, 76:207-212.
Johnsson, P. (2004). Phenolic compounds in flaxseed: Chromatographic and spectroscopic analyses of glucosidic conjugates. A PhD. thesis from Department of Food Science, Uppsala, Swedish University of Agricultural Sciences, pp. 1-36.
Julkunen-Titto, R. (1985). Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry, 33:213-217.
Kamal-Eldin, A., Peerlkamp, N., Johnsson, P., Andersson, R., Andersson, R.E., Lundgren, L.N. and Ǻman, P. (2001). An oligomer from flaxseed composed of secoisolariciresinoldiglucoside and 3-hydroxy-3-methyl glutaric acid residues. Phytochemistry, 58:587-590.
Kellogg, E.W. and Fridovich, I. (1975). Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. Journal of Biological Chemistry, 250:8812-8817.
Kim, S.J., Han, D., Moon, K.D. and Rhee, J.S. (1995). Measurement of superoxide dismutase-like activity of natural antioxidants. Bioscience, Biotechnology, and Biochemistry, 59:822-826.
Kitts, D.D., Yuan, Y.V., Wijewickreme, A.N. and Thompson, L.U. (1999). Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Molecular and Cellular Biochemistry, 202:91-100.
Klosterman, H.J. and Smith, F. (1954). The isolation of β-hydroxy-β-methylglutaric acid from the seed of flax (Linum usitatissimum). Journal of the American Chemical Society, 76:1229-1230.
Klosterman, H.J., Smith, F. and Clagett, C.O. (1955). The constitution of Linocinnamarin. Journal of the American Chemical Society, 77:420-421.
Knust, U., Hull, W.E., Spiegelhalder, B., Bartsch, H., Strowitzki, T. and Owen, R.W. (2006). Analysis of enterolignan glucuronides in serum and urine by HPLC-ESI-MS. Food and Chemical Toxicology, 44:1038-1049.
Kochnar, S.P. and Rossel, J.B. (1990). Detection, estimation and evaluation of antoxidants in food systems. In: B.J.F. Huson (Eds.), Food antioxidant. Elsevier Applied Science, London and New York, pp. 19-64.
Kozlowska, H., Zadernowski, R. and Sosulski, F.W. (1983). Phenolic acids in oilseed flours. Nahrung, 27:449-453.
Kritchevsky, D. (1995). Fibre effects on hyperlipidemia. In: S.C. Cunnane and L.U. Thompson (Eds.), Flaxseed in Human Nutrition. AOCS Press, Champaign, IL, pp. 174-186.
Kuijsten, A., Arts, I.C., Vree, T.B. and Hollman, P.C. (2005). Pharmacokinetics of enterolignans in healthy men and women consuming a single dose of secoisolariciresinol diglucoside. Journal of Nutrition, 135:795-801.
Kuijsten, A., Arts, I.C., Hollman, P.C., van't Veer, P. and Kampman, E. (2006). Plasma enterolignans are associated with lower colorectal adenoma risk. Cancer Epidemiology, Biomarker and Prevention, 15:1132-1136.
Labuza, T.P. (1971). Kinetics of lipid oxidation in foods. CRC Critical Reviews in Food Science and Technology, 2:355-405.
Lampe, J.W., Martini, M.C., Kurzer, M.S., Adlercreutz, H. and Slavin, J.L. (1994). Urinary lignan and isoflavonoid excretion in premenopausal women consuming flaxseed powder. American Journal of Clinical Nutrition, 60:122-128.
Li, D., Yee, J.A., Thompson, L.U. and Yan, L. (1999). Dietary supplementation with secoisolariciresinol diglycoside (SDG) reduces experimental metastasis of melanoma cells in mice. Cancer Letters, 142:91-96.
Li-Chan, E.C.Y. and Ma, C.Y. (2002). Thermal analysis of flaxseed (Linum usitatissimum) proteins by differential scanning calorimetry. Food Chemistry, 77:495-502.
Liggins, J., Crimwood, R. and Bingham, S.A. (2000). Extraction and quantification of lignan phytoestrogens in food and human samples. Analytical Biochemistry, 287:102-109.
Lin, X., Switzer, B.R. and Demark-Wahnefried, W. (2001). Effect of mammalian lignans on the growth of prostate cancer cell lines. Anticancer Research, 21:3995-4000.
Lin, X., Gingrich, J.R., Bao, W., Li, J., Haroon, Z.A. and Demark-Wahnefried, W. (2002). Effect of flaxseed supplementation on prostatic carcinoma in transgenic mice. Urology, 60:919-924.
Long, W. [Personal communication, 1997]. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Plant and Dairy Foods and Beverages. College Park, MD.
Lu, Y. and Foo, L.Y. (2000). Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chemistry, 68:81-85.
Lupien, P.J., Moorjani, S., Brun, D. and Bielmann, I. (1979). Effects of 3-hydroxy-3-methylglutaric acid on plasma and low-density lipoprotein cholesterol levels in familial hypercholesterolemia. Journal of Clinical Pharmacology, 19:120-126.
MacRae, W.D. and Towers, G.H.N. (1984). Biological activities of lignans. Phytochemistry, 23:1207-1220.
Maxwell, S.R.J. (1995). Prospects for the use of antioxidant therapies. Drugs, 49:345-361.
Mazur, W.M., Fotsis, T., Wähälä, K., Ojala, S., Salakka, A. and Adlercreutz, H. (1996). Isotope-dilution gas-chromotographic mass-spectrometric method for the determination of isoflavonoids, coumestrol and lignans in food samples. Analytical Biochemistry, 233:169-180.
Mazur, W.M. and Adlercreutz, H. (1998). Natural and anthropogenic environmental oestrogens: the scientific basis for risk assessment: naturally occurring oestrogens in food. Pure and Applied Chemistry, 70:1759-1776.
Mazur, W.M., Duke, J.A., Wähälä, K., Rasku, S. and Adlercreutz, H. (1998). lsoflavones and lignans in legumes: nutritional and health aspects in humans. Nutritional Biochemistry, 9:193-200.
Mazza, G. and Biliaderis, C.G. (1989). Functional properties of flaxseed mucilage. Journal of Food Science, 54:1302-1305.
Mazza, G. and Oomah, B.D. (1995). Flaxseed, dietary fibre, and cyanogens. In: S.C. Cunnane and L.U. Thompson (Eds.), Flaxseed in Human Nutrition. AOCS Press, Champaign, IL, pp. 56-81.
Meagher, L.P., Beecher, G.R., Flanagan, V.P. and Li, B.W. (1999). Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. Journal of Agricultural and Food Chemistry, 47:3173-3180.
de Mejía, E.G., Castaño-Tostado, E. and Loarca-Piña, G. (1999). Antimutagenic effect of natural phenolic compounds in beans. Genetic Toxicology and Environmental Mutagenesis, 441:1-9.
Milder, I.E.J., Arts, I.C.W., Venema, D.P., Lasaroms, J.J.P., Wähälä, K. and Hollman, P.C.H. (2004). Optimization of a liquid chromatography-tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol and pinoresinol in foods. Journal of Agricultural and Food Chemistry, 52:4643-4651.
Mitsuda, H., Yuasumoto, K. and Iwami, K. (1996). Antioxidation action of indole compounds during the autoxidation of linoleic acid. Eiyo to Shokuryo, 19:210-214.
Morris, D.H. Flax - A Health and Nutrition Primer. Web URL: http://www.flaxcouncil.ca. (accessed Sep 2004).
Morton, M.S., Wilcox, G., Wahlqvist, M.L. and Griffiths, K. (1994). Determination of lignans and isoflavonoids in human female plasma following dietary supplementation. Journal of Endocrinology, 142:251-59.
Nakamura, Y., Ohto, Y., Murakami, A. and Ohigashi, H. (1998). Superoxide scavenging activity of rosmarinic acid from Perilla Frutescens Britton Var. acuta f. viridis. Journal of Agricultural and Food Chemistry, 46:4545-4550.
Nesbitt, P.D., Lam, Y. and Thompson, L.U. (1999). Human metabolism of mammalian lignan precursors in raw and processed flaxseed. American Journal of Clinical Nutrition, 69:549-555.
van Niekerk, J.L., Hendriks, T., Gevers Leuven, J.A., Havekes, L. and de Boer, H.H. (1984). The lipid lowering effects of 3-hydroxy-3-methylglutaric acid and bile acid drainage in WHHL rabbits. Clinical Science, 67:439-444.
Nurmi, T., Voutilainen, S., Nyyssönen, K., Adlercreutz, H. and Salonen, J.T. (2003). Liquid chromatography method for plant and mammalian lignans in human urine. Journal of Chromatography B, 798:101-110.
Obermeyer, W.R., Musser, S.M., Betz, J.M., Casey, R.E., Pohland, A.E. and Page, S.W. (1995). Chemical studies of phytoestrogens and related compounds in dietary supplements: Flax and Chaparral. Proceedings of the Society for Experimental Biology and Medicine, 208:6-12.
Oomah, B.D. and Mazza, G. (1993). Flaxseed proteins-A review. Food Chemistry, 48:109-114.
Oomah, B.D., Kenaschuck, E.O. and Mazza, G. (1995). Phenolic acids in flaxseed. Journal of Agricultural and Food Chemistry, 43:2016-2019.
Oomah, B.D., Mazza, G. and Kenaschuck, E.O. (1996). Flavonoid content of flaxseed. Influence of cultivar and environment. Euphytica, 90:163-167.
Oomah, B.D. and Mazza, G. (2000). Bioactive components of flaxseed: occurrence and health benefits. In: F. Shahidi and C.T. Ho (Eds.), Phytochemicals and phytopharmaceuticals. AOCS Press, Champaign, pp. 105-120.
Orcheson, L.J., Rickard, S.E., Seidl, M.M. and Thompson, L.U. (1998). Flaxseed and its mammalian lignan precursor cause a lengthening or cessation of estrous cycling in rats. Cancer Letters, 125:69-76.
Osawa, T. (1999). Protective role of dietary polyphenols in oxidative stress. Mechanisms of Ageing and Development, 111:133-139.
Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose amine. Japanese Journal of Nutrition, 44:307-315.
Park, M.S. and Liepa, G.U. (1982). Effects of dietary protein and amino acids on the metabolism of cholesterol-carrying lipoproteins in rats. Journal of Nutrition, 112:1892-1898.
Phipps, W.R., Martini, M.C., Lampe, J.W., Slavin, J.L. and Kurzer, M.S. (1993). Effect of flax seed ingestion on the menstrual cycle. Journal of Clinical Endocrinology & Metabolism, 77:1215-1219.
Prasad, K., Gupta, J.B., Kalra, J., Lee, P., Mantha, S.V. and Bharadwaj, B. (1996).Oxidative stress as a mechanism of cardiac failure in chronic volume overload in canine model. Journal of Molecular and Cellular Cardiology, 28:375-385.
Prasad, K. (1997a). Dietary flax seed in prevention of hypercholesterolemic atherosclerosis. Atherosclerosis, 132:69-76.
Prasad, K. (1997b). Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed. Molecular and Cellular Biochemistry, 168:117-123.
Prasad, K. (1999). Reduction of serum cholesterol and hypercholesterolemic atherosclerosis by secoisolariciresinol diglucoside isolated from flaxseed. Circulation, 99:1355-1362.
Prasad, K. (2000a). Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: effect of secoisolariciresinol diglucoside (SDG). Molecular and Cellular Biochemistry, 209:89-96.
Prasad, K. (2000b). Antioxidant activity of secoisolariciresinol diglucosidederived metabolites, secoisolariciresinol, enterodiol, and enterolactone. International Journal of Angiology, 9:220-225.
Prasad, K. (2001). Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat. Journal of Laboratory and Clinical Medicine, 138:32-39.
Prasad, K. (2005). Hypocholesterolemic and antiatherosclerotic effect of flax lignan complex isolated from flaxseed. Atherosclerosis, 179:269-275.
Pszczola, D.E. (2000). Genes and diet: the specialized role ingredients may play. Food Technology, 54:82-84, 96.
Rickard, S.E., Orcheson, L.J., Seidl, M.M., Luyengi, L., Fong, H.S. and Thompson, L.U. (1996). Dose-dependent production of mammalian lignans in rats and in vitro from the purified precursor secoisolariciresinol diglycoside in flaxseed. Journal of nutrition, 126:2012-2019.
Rickard, S.E. and Thompson, L.U. (1997). Health effects of flaxseed mucilage, lignans. Inform, 8:860-865.
Rickard, S.E., Yuan, Y.V. and Thompson, L.U. (2000). Plasma insulin-like growth factor I levels in rats are reduced by dietary supplementation of flaxseed or its lignan secoisolariciresinol diglycoside. Cancer Letters, 161:47-55.
Robak, J. and Grygelewski, I.R. (1988). Flavonoids are scavengers of superoxide anions. Biochemical Pharmacology, 37:837-841.
Saarinen, N.M., Smeds, A., Mäkelä, S.I., Ämmälä, J., Hakala, K., Pihlava, J.M., Ryhänen, E.L., Sjöholm, R. and Santti, R. (2002). Structural determinants of plant lignans for the formation of enterolactone in vivo. Journal of Chromatography B, 777:311-319.
Sano, T., Oda, E., Yamashita, T., Shiramasa, H., Ijiri, Y., Yamashita, T. and Yamamoto, J. (2003). Antithrombic and anti-atherogenic effects of partially defatted flaxseed meal using a laser-induced thrombosis test in apolipoprotein E and low-density lipoprotein receptor deficient mice. Blood Coagulation and Fibrinolysis, 14:707-712.
Schwass, D.E. and Finnley, J.W. (1984). Heat and alkaline damage to proteins: Racemization and lysinoalanine formation. Journal of Agricultural and Food Chemistry, 32:1377-1382.
Schwartz, H. and Sontag, G. (2006). Determination of secoisolariciresinol, lariciresinol and isolariciresinol in plant foods by high performance liquid chromatography coupled with coulometric electrode array detection. Journal of Chromatography B, 838:78-85.
Setchell, K.D.R, Lawson, A.M., Axelson, M. and Adlercreutz, H. (1979). The excretion of two new phenolic compounds during the human menstrual cycle and in pregnancy, endocrinological cancer, ovarian function and disease. In: H. Adlercreutz, R.D. Bulbroock, H.J. van der Molen, A. Vermeulen, and S. Sciarra (Eds.), Proceedings of the IX meeting of the international study group for steroid hormones, Rome, December 5-7, 515:207-215.
Setchell, K.D.R., Lawson, A.M., Borrielo, S.P., Harkness, R., Gordon, H., Morgan, D.M.L., Kirk, D.N., Adlercreutz, H. and Anderson, L.C. (1981). Lignan formation in man-microbial involvement and possible roles in relation to cancer. The Lancet, 318:4-7.
Setchell, K.D.R., Lawson, A.M., Borriello, S.P., Adlercreutz, H. and Axelson, M. (1982). Formation of lignans by intestinal microflora. In: R.A. Malt and R.C.N. Williamson (Eds.), Falk Symposium 31, Colonic Carcinogenesis. MTP Press Ltd., Lancaster, pp. 93-97.
Shahidi, F. and Wanasundara, P.K. (1992). Phenolic antioxidants. Critical Reviews in Food Science and Nutrition, 32:67-103.
Shukla, R., Hilaly, A.K. and Moore, K.M. (2003). Process for obtaining lignan. United States patent 20030055227.
Sicilia, T., Niemeyer, H.B., Honig, D.M. and Metzler, M. (2003). Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. Journal of Agricultural and Food Chemistry, 51:1181-1188.
Simopoulos, A.P. (1999). Essential fatty acids in health and chronic disease. American Journal of Clinical Nutrition, 70(suppl):560S-569S.
Smeds, A.I., Saarinen, N.M., Hurmerinta, T.T., Penttinen, P.E., Sjöholm, R.E. and Mäkelä, S.I. (2004). Urinary excretion of lignans after administration of isolated plant lignans to rats: the effect of single dose and ten-day exposures. Journal of Chromatography B, 813:303-312.
Smeds, A.I., Hakala, K., Hurmerinta, T.T., Kortela, L., Saarinen, N.M. and Mäkelä, S.I. (2006). Determination of plant and enterolignans in human serum by high-performance liquid chromatography with tandem mass spectrometric detection. Journal of Pharmaceutical and Biomedical Analysis, 41:898-905.
Soleas, G.J., Grass, L., Josephy, P.D., Goldberg, D.M. and Diamandis, E.P. (2002). A comparison of the anticarcinogenic properties of four red wine polyphenols. Clinical Biochemistry, 35:119-124.
Stitch, S.R., Toumba, J.K., Groen, M.B., Funke, C.W., Leemhuis, J., Vink, J. and Woods, G.F. (1980). Excretion, isolation and structure of a new phenolic constituent of female urine. Nature, 287:738-740.
Sugano, M. and Beynen, A.C. (Eds.). (1990). Dietary proteins, cholesterol metabolism and atherolsclerosis. New York: Basel.
Sung, M.K., Lautens, M. and Thompson, L.U. (1998). Mammalian lignans inhibit the growth of estrogen-independent human colon tumor cells. Anticancer Research, 18:1405-1408.
Thompson, L.U., Robb, P., Serraino, M. and Cheung, F. (1991). Mammalian lignan production from various foods. Nutrition and Cancer, 16:43-52.
Thompson, L.U., Rickard, S.E., Cheung, F., Kenaschuk, E.O. and Obermeyer, W.R. (1997). Variability in anticancer lignan levels in Flaxseed. Nutrition and Cancer, 27:26-30.
Thompson, L.U. (1998). Experimental studies on lignans and Cancer. Bailliere’s Clinical Endocrinology and Metabolism, 12:691-705.
Wang, C., Mäkelä, T., Hase, T., Adlercreutz, H. and Kurzer, M.S. (1994). Lignans and flavonoids inhibit aromatase enzyme in human preadipocyte. Journal of Steroid Biochemistry and Molecular Biology, 50:205-212.
Wang, L.Q. (2002). Mammalian phytoestrogens: enterodiol and enterolactone. Journal of Chromatography, 777:289-309.
Westcott, N.D. and Muir, A.D. (1996). Process for extracting and purifying lignans and cinnamic acid derivatives from flaxseed. PCT Patent WO9630468A2.
Westcott, N.D. and Paton, D. (2001). A complex containing lignan, phenolic and aliphatic substances from flax and process for preparing. United States Patent 6,264,853.
Xu, X., Harris, K.S., Wang, H.J., Murphy, P.A. and Hendrich, S. (1995). Bioavailability of soybean isoflavones depends upon gut microflora in women. Journal of Nutrition, 125:2307-2315.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔