(3.238.186.43) 您好!臺灣時間:2021/02/28 15:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許致偉
研究生(外文):Hsu Chih Wei
論文名稱:高科技園區對於周界總懸浮微粒及重金屬含量之衝擊
論文名稱(外文):The total suspended particle and heavy metal impact study from a high-tech industrial park
指導教授:張鎮南張鎮南引用關係
指導教授(外文):Chang Cheng Nan
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:90
中文關鍵詞:金屬(Metal)總懸浮微粒(TSP)中部科學園區(CTSP)砷化物(arsenic)空氣污染模式(TAPM)
外文關鍵詞:MetalTSPCTSParsenicTAPM
相關次數:
  • 被引用被引用:1
  • 點閱點閱:993
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:577
  • 收藏至我的研究室書目清單書目收藏:0
擴建科學工業園區正是全球開發中國家邁向已開發國家行列中的必經流程,而台灣正是個典型的例子,靠著其強大的產能為台灣賺進許多外匯,也讓台灣成為全球的科技重鎮,而同時,由於過度開發卻也無形中可能排放出大量的有害污染物進入週邊空氣及水體中。砷、鎘、鉛正是典型的精密機械及光電半導體產業排放污染物。本研究自2005年12月到2007年2月於台灣中部科學園區進行空氣中總懸浮微粒的採樣,並且檢測其內含的重金屬濃度,且利用此探討工業區在建設時及運作前後對於週邊空氣品質所造成的衝擊。中部科學園區是由玻璃基板、液晶面板生產、精密機械、半導體、光電、研發機構…等產業組成。本研究依據此工業區的風向來設置採樣地點,而採樣器為高流量採樣器(流量為200 L min-1),使用石英濾紙,採樣時間為一天。而樣品經過消化後以火焰式原子吸收光譜儀或石墨式原子吸收光譜儀來進行分析,分析元素為︰As, Fe, Mn, Cu, Cd, Ca, Zn, Pb, Mg, Ni, Cr。分析的數據以主成份分析法、高斯模式、空氣污染模式(TAPM)來模擬重金屬的擴散現象。結果顯示出此園區營運前後的砷濃度分別為1.4 ng m-3與11.1±9.2 ng m-3,而依據此地區的優勢風向指出,其下風處As濃度明顯大於上風處。主成份分析方法指出此科學園區週邊有數個潛在污染源,而利用高斯模式可依據採樣點的污染濃度估計出As排放的理論值。而空氣污染模式(TAPM)亦印證了污染事件日當天之風場狀況以及氣塊之流動軌跡(NE),此模擬結果可幫助本研究所假設的東北風風向之上下風處採樣點為正確的,另外也可幫助日後採樣找尋最合適之採樣點。目前的研究結果可推論玻璃,光電及半導體產業可能為As排放的主要排放源,此研究亦對於未來研判污染源有極大的幫助。然而本研究尚還需要收集更多資訊,以於日後之長期監測及鑑定潛在之污染源。
The expansion of high-tech industry is the way to upgrade the product value in many developing countries. In Taiwan, there are several science-based industrial parks, which generate tremendous high value-added export products, meanwhile they also may emit toxic substances into both air and water bodies. Arsenic, cadmium and lead are commonly found in the ambient air near industrial parks. This study conducted a survey program, between Dec. 2005 and Feb. 2007, at the central Taiwan science park (CTSP). Since the CTSP is under construction during the initial sampling period, therefore, the investigate data may cover the pollution before and after the operation of it. The types of CTSP industry include flat glass, aerospace, precision machinery, optoelectronics, semiconductor and other strategic research and development laboratories. This project allocates the sampling sites which cover the upstream and downstream of the emission sources according to the wind direction. The atmospheric particulate is collected through a high volume air samplers with quartz filter under the initial air flow rate of 200 L min-1 for 24 hours. The digested filter samples were analyzed by either flame or graphite type furnace of atomic absorption spectrophotometer. Eleven elements, arsenic, iron, manganese, copper, cadmium, calcium, zinc, lead, magnesium, nickel and chromium, were included in this study. The principal component analysis (PCA) method, Gaussian dispersion model and The Air Pollution Model (TAPM) were adapted to simulate the heavy metal dispersion phenomena. The results indicate the ambient level of arsenic before and after the operation of CTSP are 1.4 ng m-3 and 11.1±9.2 ng m-3 respectively. The ambient arsenic level in downstream of CTSP is significantly higher than that of upstream based on the wind direction. According to PCA analysis, it points out several potential pollutants which located in this site. A comprehensive sampling program, under high NE wind case with 4 sampling sites run in series, proven the serious As pollution facts and provide variable data to trace back the pollution sources. The Gaussian dispersion model can estimate the theoretical amount of arsenic discharge in the sampling area and provide an acceptable amount of discharge for the pollution reduction purpose based upon the risk analysis data base. The simulation results from TAPM model identify the sampling result during NE bound wind’s case are correct. It also can apply to predict the optima sampling sites based on the on-site climate information. The flat glass, optoelectronics and semiconductor industries are assumed to be the high potential emission sources of arsenic. The findings also can offer a strategy to allocate the optima sampling program according to the Gaussian and TAPM. However, the possible pollution contributors, in this specific case, still need more information to either collection long term data and identify the potential pollution sources.
I
Contents
Chapter 1. Introduction………………………………………………………... 1
Chapter 2. Objectives…………………………………………………………. 9
Chapter 3. Materials and Method……………………………………………... 10
3.1 Sampling sites information…………………………………… 10
3.2 Meteorological data…………………………………………… 10
3.3 Sample collection…………………………………………….. 14
3.4 Analytical procedure………………………………………….. 14
3.5 Calculation of particulate and metal concentrations………….. 16
3.6 Quality control………………………………………………… 21
3.7 Pollution source identification………………………………... 23
Chapter 4. Results and Discussion……………………………………….…… 25
4.1 Total suspended particulate concentration...………………….. 25
4.2 Metal concentration…………………………………………… 36
4.3 Statistic analysis…..…………………………………………... 47
4.4 Model analysis………………………………………………... 51
Chapter 5. Conclusions and Suggestions……………………………………… 56
5.1 Conclusions…………………………………………………… 56
5.2 Suggestions……………………………………………………. 57
Chapter 6. References…………………………………………………………. 58
Appendix A. Metal Calibration Curve
Appendix B. Metal concentration of the sampling program
Appendix C. The parameters for TAPM and Gaussian dispersion models
Appendix D. 其他單位分析結果;平行分析比對結果
II
List of Figures
Figure 1-1. The glass producing process………………………………………… 8
Figure 1-2. The arsine treatment process………………………………………… 8
Figure 3-1. The sampling site of this study during winter season, i.e., NE bound
wind case.…………………………....................................................
9
Figure 3-2. The apparel of TE-1000 Poly-Urethane-Foam High Volume Air
Sampler (General Metal Work, USA)………………………………..
17
Figure 3-3. The auto-digital hot plate……………………………………………. 19
Figure 3-4. The Polarized-Zeeman Atomic Absorption Spectrophotometer
(Z-5000, HITACHI, Japan)………………………………………….
20
Figure 4-1. The average annual TSP (μg/m3) of Taichung City between 2000
and 2004 compared to this study and Tsai’s report………………….
27
Figure 4-2. The comparison of the average monthly TSP (μg/m3) between this
study and the previous data (2000 to 2006) (Tsai’s report, 2006)…..
28
Figure 4-3. The TSP profiles during sampling period from December 2005 to
February 2007 at Taya, THU and LTGA sites…….………………...
29
Figure 4-4. The comparison of the tendency between TSP (μg/m3) and the wind
speed (m/s) at all sampling sites (Taya, THU and LTGA)………….
33
Figure 4-5. The comparison of each sampling site for every monthly (Dec. 2005
to Feb. 2007) arsenic concentration (ng/m3) in total suspended
particulate (TSP)…………………………………………………….
41
Figure 4-6. The tendency of arsenic concentrations (ng/m3) based on wind speed
(m/s) during sampling period (Dec. 2005 to Feb. 2007) at all
sampling sites………………………………………………………..
42
Figure 4-7. The As concentrations (ng/m3) based on wind direction at all
sampling sites……………………………………………………….
43
III
Figure 4-8. The tendency of As concentration (ng/m3) based on the TSP (μg/m3)
concentration at all sampling sites…………………………………...
44
Figure 4-9. The sampling sites for the comprehensive sampling program Jan. 12
and Jan. 31 2007……………………………………………………..
46
Figure 4-10. The factor analysis of metallic elements in total suspended particles
at Taya, THU and LTGA site………………………………………...
50
Figure 4-11. The simulation air parcel trajectory by TAPM at TA site (Feb. 01.
2006)…………………………………………………………………
54
Figure 4-12. The contour map for arsenic pollutant at this area………………….. 55
IV
List of Tables
Table 1-1. The emission standard for semiconductor manufacture in Taiwan….. 7
Table 3-1. The meteorological information, which is collected from the Taiwan
Central Weather Bureau and the Environmental Protection
Administration Executive Yuan, R.O.C, includes the sampling
date’s temperature, relative humidity, prevailing wind direction and
wind speed…………………...………………………………………
12
Table 3-2. The flow chart of metal analyses in TSP……………………………. 18
Table 3-3. Method detection limit (MDL) of each metal concentration by using
the Polarized-Zeeman Atomic Absorption Spectrophotometer……..
22
Table 4-1. The yearly death toll of respiratory diseases in Taichung City
comparing between total suspended particulate (μg/m3)……………
35
Table 4-2. The metal concentration (ng/m3) comparison of total suspended
particulate (TSP) obtained by this study and other researches………
39
Table 4-3. As concentrations (ng/m3) at all sampling sites for the
comprehensive sampling programs………………………………….
46
Table 4-4. The correlation coefficients of TSP and arsenic concentrations and
meteorological parameters at all sampling sites…………………….
49
Table 4-5. The high level concentrations and the simulated results of metal
elements at THU site during the NE wind direction and the Tang-An
building site date at Feb. 01. 2007…………………………………...
53
Table 4-6. The verification of Gaussian dispersion model in the NE direction
wind seasons (2005 to 2007)………………………………………..
53
58
6. REFERENCES
Air and Noise Pollution Control Section, Environmental Protection Bureau, Taichung
City, 2007. A Statistic of dry deposition flux collected from the artful monitor
station at Taichung City, http://www.tcepb.gov.tw/air/index.asp.
Borbély-Kiss, I., Koltay, E., Szabo, G.Y., Bozó, L., Tar, K., 1999. Composition and
sources of urban and rural atmospheric aerosol in Eastern Hungary. Journal of
Aerosol Science 30: 3, 369-391.
Central Taiwan Science Park official website, 2007. http://www.ctsp.gov.tw.
Central Weather Bureau, Taiwan, 2007. http://www.cwb.gov.tw.
Chang, C.N., Cheng, W.L., Hsu, C.W., Wu, G.C., Hsueh, C.A., 2007. The impact of
ambient heavy metal content before and after the operation of a high-tech
industrial park. International Conference on Environmental Science and
Technology, 2007.
Chein, H.M., Hsu, Y.D., Shankar, G., Chen, T.M., Huang, C.C. (ITRI) 2006.
“Evaluation of arsenical emission from semiconductor and optoelectronics
facilities in Hsinchu, Taiwan” Atmospheric Environment 40: 10, 1901-1907.
Chein, H.M., Chen, T.M., Aggarwal, S.G., Tsai, C.J., Huang, C.C., 2004. Inorganic
acid emission factors of semiconductor manufacturing processes. Journal of the
Air & Waste Management Association 54: 2, 218–228.
Chao, C.Y., Wong, K.K., 2002. Residential indoor PM10 and PM2.5 in Hong Kong and
the elemental composition. Atmospheric Environment 36: 2, 265–277.
Christina, P., Athanasios, T., Themistoklis, K., Constantini, S., 2006. Trace elements
in atmospheric particulate matter over a coal burning power production area of
western Macedonia, Greece. Chemosphere 65: 11, 2233–2243.
Clarke, A.G., Chen, J.M., Pipitsangchand, S., Azadi-Bougar, G.A., 1996. Vehicular
particulate emission and roadside air pollution. The Science of the Total
59
Environment 189: 190, 417-422.
Cong, Z., Kang, S., Liu, X., Wang, G., 2007. Elemental composition of aerosol in the
Nam Co region, Tibetan Plateau, during summer monsoon season. Atmospheric
Environment 41: 6, 1180–1187.
Costa, X., Dreher, X., 1997. Bioavailable transition metals in particulate matter
mediate cardiopulmonary injury in healthy and compromised animal models.
Environment and Health Perspectives 105: 5, 1053-1060.
Dockery, D.W., Pope, C.A., 1994. Acute respiration effects of particulate air pollution.
Annual Review of Public Health 15: 2, 107-132.
Englyst, V., Gerhardsson, L., Rylander, L., Nordberg, G., 2001. Lung cancer risks
among lead smelter workers also exposed to arsenic. The Science of the Total
Environment 273: 1-3, 77-82.
European Community. 1992. European Community Desk book. Washington, D.C.:
Environmental Law Institute.
Espinosa, A.J.F., Rodríguez, M.T., Rosa, F.J.B.D.L., Sánchez, J.C.J., 2001. Size
distribution of metals in urban aerosols in Seville (Spain). Atmospheric
Environment 35: 14, 2595-2601.
Espinosa, A.J.F., Rodríguez, M.T., Rosa, F.J.B.D.L., Sánchez, J.C.J., 2002. A
chemical speciation of trace metals for fine urban particles. Atmospheric
Environment 36: 5, 773-780.
Espinosa, A.J.F., Rodríguez, M.T., Álvarez, F.F., 2004. Source characterization of
fine urban particles by multivariate analysis of trace metals speciation.
Atmospheric Environment 38: 6, 873-886.
Fang, G.C., Wu, Y.S., Fu, P.P.C., Chang, C.N., Chen, M.H., Ho, T.T., Huang, S.H.,
Rau, J.U., 2005. Metallic elements study of fine and coarse particulates using a
versatile air pollutant system at a traffic sampling site. Atmospheric Research 75:
1-2, 1-14.
60
Funasakaa, K., Sakaia, M., Shinyaa, M., Miyazakia, T., Kamiuraa, T., Kanecob, S.,
Ohtab, K., Fujitaa, T., 2003. Size distributions and characteristics of atmospheric
inorganic particles by regional comparative study in Urban Osaka, Japan.
Atmospheric Environment 37: 33, 4597–4605.
Fushimi, A., Kawashima, H., Kajihar, H., 2005. Source apportionment based on an
atmospheric dispersion model and multiple linear regression analysis.
Atmospheric Environment 39: 7, 1323-1334.
Gao, Y., Nelson, E.D., Field, M.P., Ding, Q., Li, H., Sherrell, R.M., Gigliotti, C.L.,
Van Ry, D.A., Glenn, T.R., Eisenreich, S.J., 2002. Characterization of
atmospheric trace elements in PM2.5 particulate matter over the New York-New
Jersey harbor estuary. Atmospheric Environment 36: 6, 1077-1086.
Gidhagen, L., Kahelin, H., Schmidt, P., Johansson, C., 2002. Anthropogenic and
natural levels of arsenic in PM10 in Central and Northern Chile. Atmospheric
Environment 36: 23, 3803–3817.
Holsen, T. M., Noll, K. E., 1992. Dry deposition of atmospheric particles: application
of current models to ambient data. Environmental Science and Technology 26: 9,
1802-1814.
Hu, C.W., Chao, M.R., Wu, K.Y., Chang-Chien, G.P., Lee, W.J., Chang, L.W., Lee,
W.S., 2003. Characterization of multiple airborne particulate metals in the
surroundings of a municipal waste incinerator in Taiwan. Atmospheric
Environment 37: 20, 2845-2852.
Inoka, S., David, S., 2004. Elemental composition in source identification of brown
haze in Auckland, New Zealand. Atmospheric Environment 38: 19, 3049–3059.
Jadhav, R.A., Fan, L.S., 2001. Capture of gas-phase arsenic oxide by lime: kinetic and
mechanistic studies. Environmental Science & Technology 35: 4, 794–799.
Kumara, A.V., Patilb, R.S., Nambic, K.S.V., 2001. Source apportionment of
61
suspended particulate matter at two traffic junctions in Mumbai, India.
Atmospheric Environment 35: 25, 4245–4251.
Manalis, N., Grivas, G., Protonotarios, V., Moutsatsou, A., Samara, C., Chaloulakou,
A., 2005. Toxic metal content of particulate matter (PM10), within the Greater
Area of Athens. Chemosphere 60: 4, 557-566.
Mathew, R.H., Leon, R.H., Raymond, M.A., Iain, J.B., 2005. Total and water-soluble
trace metal content of urban background PM10, PM2.5 and black smoke in
Edinburgh, UK. Atmospheric Environment 39: 8, 1417–1430.
Marcazzan, G.M., Vaccaro, S., Valli, G., Vecchi, R., 2001. Characterisation of PM10
and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmospheric
Environment 35: 27, 4639–4650.
Natalie, J., P., Gliff, I., D., 2005. Determination of trace elements in ambient aerosol
samples. Analytica Chimica Acta 540: 2, 269–277
O’RYAN, R., DÍAZ, M., 2000. Risk-Cost Analysis for the Regulation of Airborne
Toxic Substances in a Developing Context. Environmental and Resource
Economics 15:2, 115–134.
Pedersen, D.U., Durant, J.L., Penman, B.W., Crespi, C.L., Hemond, H.F., Lafleur,
A.L., Cass, G.R., 1999. Seasonal and spatial variations in human cell mutagen
city of respirable airborne particles in the Northeastern United States.
Environmental Science and Technology 33: 24, 4407-4415.
Peter, J.H., William, L.P., Ashok, K.L., 2005. TAPM: a practical approach to
prognostic meteorological and pollution modeling. Environmental Modelling &
Software 20: 6, 737-752.
Quiterio, S.L., Sousa, C.R., Arbilla, G., Escaleira, V., 2005. Evaluation of levels,
sources and distribution of airborne trace metals in seven districts of the Baixada
Fluminense, Rio de Janeiro, Brazil. Atmospheric Environment 39: 19,
62
3503-3512.
Ragosta, M., Caggiano, R., Démilio, M., Macchiato, M., 2002. Source origin and
parameters influencing levels of heavy metals in TSP, in an industrial
background area of Southern Italy. Atmospheric Environment 36: 19,
3071-3087.
Regina, M.M., Maria. F.A., 2005. Physicochemical characteristics of atmospheric
aerosol during winter in the Sa˜o Paulo Metropolitan area in Brazil. Atmospheric
Environment 39: 33, 6188–6193.
ROC EPA Environmental Analysis Laboratory website, 2000. NIEAA102.11A,
http://www.niea.gov.tw/niea/AIR/A10211A.htm.
ROC EPA Environment Laws and Regulations website, 2007. The emission standard
for materials and components of optoelectronics and semiconductor manufacture,
http://www.epa.gov.tw/main/index.asp.
ROC EPA Environment Laws and Regulations website, 2007. The Air Quality
Standard, http://www.epa.gov.tw/main/index.asp.
Sabah. A. and Basma, Y., 2004. Total suspended dust and heavy metal levels emitted
from a workplace compared with nearby residential houses. Atmospheric
Environment 38: 5, 745–750.
Samara, C. and Voutsa, D., 2005. Size distribution of airborne particulate matter and
associated heavy metals in the roadside environment. Chemosphere 59: 8,
1197-1206.
Salvador, P., Alonso, D.G., Querol, X., Alastuey, A., 2004. Identification and
characterization of sources of PM10 in Madrid (Spain) by statistical methods.
Atmospheric Environment 38: 3, 435-447.
Serife, T. and Senol, K., 2006. Multivariate analysis of the data and speciation of
heavy metals in street dust samples from the Organized Industrial District in
63
Kayseri (Turkey). Atmospheric Environment 40: 16, 2797–2805.
Su, C.C., Master Thesis: “半導體工業區空氣污染物之懸浮微粒的調查分析”,
National Tsing Hua University, 2000.
Tomoaki, O., Jun, K., Junya, M., Masaki, T., Yusuke, S., Shigeru, T., Kebin, H.,
Yongliang, M., Fumo, Y., Xuechun, Y., Fengkui, D., Yu, L., 2004. Daily
concentrations of trace metals in aerosols in Beijing, China, determined by using
inductively coupled plasma mass spectrometry equipped with laser ablation
analysis, and source identification of aerosols. Science of the Total Environment
330: 1-3, 145–158.
Trijonis, J., 1983. Development and application of methods for estimating inhalable
and fine particle concentrations from routine hi-volume data. Atmospheric
Environment 17, 999-1008.
Tsai, 2006. “應用統計方法鑑定工業區重金屬排放與分佈特性”,中華民國環境工
程學會2006 空氣污染控制技術研討會。
The Governmental Public Health Bureau, Taichung City, Taiwan, 2007. The Major
Death Reason at Taichung City, http://203.65.81.59/board.htm.
USEPA National Ambient Air Quality Standards website, 2007. National Ambient
Air Quality Standards, http://www.epa.gov/air/criteria.html.
USEPA Air Toxic website, 2007. Health Effects Notebook for Hazardous Air
Pollutants, http://www.epa.gov/ttn/atw/hlthef/hapindex.html.
USEPA Six Common Air Pollutants website, 2006. What are the Six Common Air
Pollutants, http://www.epa.gov/air/urbanair/6poll.html.
Vadjic, V. and Fugas, M., 1997. Assessment of air quality in Croatia. Environmental
Research Forum 7: 6, 593-598.
Voutsa, D. and Samara, C., 2002. Labile and bioaccessible fractions of heavy metals
in the airborne particulate matter from urban and industrial areas. Atmospheric
64
Environment 36: 22, 3583–3590.
Wang, C.S.C., Li, X.D., Zhang, G., Qi, S.H., Peng, X.Z., 2003. Atmospheric
deposition of heavy metals in the Pearl River Delta, China. Atmospheric
Environment 37: 6, 767-776.
Wang, X., Sato, T., Xing, B., Tamamura, S., Tao, S., 2005. Source identification, size
distribution and indicator screening of airborne trace metals in Kanazawa, Japan.
Aerosol Science 36: 2, 197-210.
WORLD BANK GROUP, 1998. Pollution Prevention and Abatement Handbook:
Airborne Particulate Matter, 202-203.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔