(3.236.175.108) 您好!臺灣時間:2021/03/01 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王孟堯
研究生(外文):Meng-Yao Wang
論文名稱:以微波消化和石墨式原子吸光法測定橄欖葉中鈹之研究
論文名稱(外文):A Study on the Determination of Beryllium in Olive Leaves by Using Microwave Digestion Followed by the Measurement with Graphite-Furnace Atomic Absorption Spectrophotometry
指導教授:郭茂松郭茂松引用關係
指導教授(外文):Mao-Sung Kuo
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:82
中文關鍵詞:橄欖葉微波消化
外文關鍵詞:berylliumolive leavesMicrowave Digestion
相關次數:
  • 被引用被引用:2
  • 點閱點閱:345
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:199
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
橄欖葉中鈹的含量可能很低,到目前為止尚未看到有關橄欖葉中鈹的分析方法或文獻發表,且橄欖葉標準參考樣品(如BCR CRM No.62)尚未註明鈹的確認值,所以本實驗想藉由微波消化並使用乙醯丙酮作為螯合劑,經固相萃取濃縮後,使用石墨式原子吸光法測定橄欖葉中鈹的含量及濃度。
首先秤取20 mg 乾燥橄欖葉樣品(BCR CRM No. 62、東大附小、新竹寶山、彰化田尾和桃園大溪)放入7-mL鐵氟龍瓶中,分別加入濃硝酸和過氧化氫作兩階段的微波消化,將橄欖葉樣品的基質分解完全,使鈹溶於酸中。以氨水調整消化液的pH值至5.0 - 6.0,然後加入醋酸銨緩衝溶液和乙醯丙酮(acetylacetone, acac),使生成Be(acac)2之螯合物。將此螯合物預濃縮於自製兩個串聯的 Oasis cartridge上,再各用甲醇將Be(acac)2沖洗出並定量至1.00 mL,取出20 µL注入石墨式原子吸光儀測定鈹的含量。
本研究使用標準添加法(standard addition method)測得五種20 mg橄欖葉樣品(BCR No. 62、東大附小、新竹寶山、彰化田尾和桃園大溪)中鈹的濃度分別為10.2 ng/g、5.9 ng/g、28.0 ng/g、3.6 ng/g和4.5 ng/g。添加0.100至0.300 ng 鈹之回收率為97.2 - 101%,相對標準偏差(RSD, n=3)≦4.0%。本方法偵測極限(MDL, 3σ)的絕對量為0.006 ng [或濃度為0.3 ng/g],線性可達0.76 ng(或濃度為38.0 ng/g)。
Abstract
The levels of beryllium ( Be ) in olive leaves maybe very low and have not been reported neither in olive leaves certified reference materials ( e.g. BCR CRM No. 62 ) nor in the literature until present. The purpose of this study is trying to develop a method for the determination of Be in olive leaves using microwave digestion, chelating with acetylacetone(acac), pre-concentrating by solid-phase extraction, eluting with methanol and then measured by GFAAS.
An amount (20 mg) of dried olive leaves (BCR No.62 and four real samples collected from Tunghai, Paoshan, Teinwei, and Dasi) was placed in a 7-mL Teflon vessel. Appropriate amounts of concentrated HNO3 and H2O2 were added to the Teflon vessel. The mixture was microwave digested at 85℃ for 10 min and the sample matrix was decomposed. After digestion, the pH was adjusted to 5 – 6 by using an ammonia solution (1 M). Suitable amounts of NH4OAc buffer and acac were added to the solution in order to form a chelate of Be(acac)2. The chelate was pre-concentrated on two home-made oasis cartridges in series and each cartridge was eluted with methanol, and adjusted to 1.00 mL. A portion (20 μL) was introduced into a graphite tube and the amount of Be was measured by GFAAS.
The contents of beryllium in five olive leave samples ( BCR No. 62, Tunghai, Paoshan, Tianwei, and Dasi ) were found to be 10.2 ng/g, 5.9 ng/g, 28.0 ng/g, 3.6 ng/g, and 4.5 ng/g, respectively, by using the standard addition method. Good spiked recoveries ( 97.2 – 101 % ) were observed. The MDL value for Be was found to be 0.3 ng/g; the calibration graph was linear up to 38.0 ng/g.
總 目 錄

摘要 i
總目錄 iii
表目錄 vi
圖目錄 viii

第一章 前言
一、鈹(Be)的性質與用途 1
二、鈹的污染來源與對人體的傷害 2
三、鈹的相關法令規定 3
四、研究動機 4
第二章 文獻回顧
ㄧ、橄欖葉中鈹的分析方法 6
二、選用石墨式原子吸光法的理由 6
三、石墨式原子吸收光譜儀(GFAAS)的基本原理 7
1. 中空陰極燈管 7
2. Zeeman背景校正系統 8
3. 基質修飾劑 10
4. 合適的加溫程式 10
(1) 乾燥 10
(2) 灰化 10
(3) 原子化 11
(4) 清除 11
四﹑適當的前處理步驟 12
1. 微波消化 12
2. 固相萃取 13
五、選用acetylacetone(acac)作為Be(Ⅱ)之螯合劑 15
第三章 實驗部份
一﹑儀器設備及材料 18
二﹑藥品與試劑 21
三﹑玻璃器皿之清洗 23
四﹑實驗步驟 24
1. 藥品和溶液之配製 24
2. 橄欖葉樣品之來源、保存及添加已知量鈹於橄欖葉樣品中之配製 25
3. 橄欖葉中鈹的測定方法 26
4. 直接將鈹配製在甲醇中之檢量線 30
5. 橄欖葉中鈹經Oasis cartridge之固相濃縮步驟 30
6. 石墨式原子吸光儀之設定條件 33
7. 以添加回收率和標準添加法檢量線之斜率作為本方法可 行性之評估 33
第四章 結果與討論
ㄧ、實驗各項參數之探討 35
1. 比較有添加與未添加acac時對鈹測定的影響. 36
2. 微波消化條件之建立 37
(1)濃HNO3用量的選擇 37
(2) H2O2用量的選擇 38
(3)微波消化溫度及時間的選擇 39
(4)一階段和二階段微波效果之的比較 41
3. 乙醯丙酮和醋酸銨緩衝溶液用量之探討 40
(1) 醋酸銨緩衝溶液用量之選擇 40
(2) 乙醯丙酮(acac)用量之選擇 42
(3) 醋酸銨緩衝溶液pH值之探討 43
4. 比較不同的固相濃縮材質和沖提體積 44
5. 石墨式原子吸光儀加溫程式之探討 45
(1) 乾燥步驟的探討 45
(2) 灰化步驟的探討 46
(3) 原子化步驟的探討 48
二、檢量線、方法偵測極限和回收率 49
1. 檢量線 49
2. 方法偵測極限(method detection limit, MDL) 55
3. 回收率測試 56

第五章 結論與建議 60

參考文獻 62

附錄一 Summary of certified values for olive leaves 70
附錄二 直接將鈹配製在甲醇中之檢量線[數據範例] 71
附錄三 使用標準添加法所得之檢量線[數據範例] 74
附錄四 如何求得MDL之範例 82
表目錄

表2-1. 溶劑極性強度 14
表2-2. 鈹在pH值4至6的物種分布(以%表示) 17
表3-1. 使用石墨式原子吸光儀測定橄欖葉中Be2+(濃縮於
甲醇後)的加溫程式 30
表3-2. 使用石墨式原子吸光儀測定鈹之設定條件 33
表4-1. 直接將鈹配製於甲醇中所得之檢量線 50
表4-2. 標準添加法檢量線及橄欖葉中(BCR No. 62)鈹之含量 53
表4-3. 標準添加法檢量線及橄欖葉中(東大附小)鈹之含量 53
表4-4. 標準添加法檢量線及橄欖葉中(新竹寶山)鈹之含量 54
表4-5. 標準添加法檢量線及橄欖葉中(彰化田尾)鈹之含量 54
表4-6. 標準添加法檢量線及橄欖葉中(桃園大溪)鈹之含量 55
表4-7. 使用本方法測得橄欖葉中鈹的方法偵測極限(MDL)值 56
表4-8. 添加Be2+於橄欖葉參考樣品BCR NO. 62 (20 mg)之回收率 57
表4-9. 添加Be2+於東大附小橄欖葉樣品(20 mg)之回收率 57
表4-10. 添加Be2+於新竹寶山橄欖葉樣品(20 mg)之回收率 58
表4-11. 添加Be2+於彰化田尾橄欖葉樣品(20 mg)之回收率 58
表4-12. 添加Be2+於桃園大溪橄欖葉樣品(20 mg)之回收率 59
















圖目錄

圖2-1. 中空陰極燈管之構造圖 8
圖2-2. 以Zeeman效應為基礎作為原子吸收光譜的背景校正系統 9
圖2-3 Oasis HLB固相萃取吸附劑的結構式 14
圖2-4. 鈹與acac螯合物之結構圖 16
圖2-5. acac形成enol form的形式 16
圖3-1. 微量樣品鐵氟龍消化瓶 26
圖3-2. 鎖瓶工具圖 27
圖3-3. 實驗流程圖 28
圖3-4. 固相萃取濃縮步驟裝置圖 32
圖4-1. 有無添加acac對鈹吸光度之的影響 37
圖4-2. 濃HNO3用量對鈹吸光度之影響 38
圖4-3. H2O2用量對鈹吸光度之影響 39
圖4-4. 微波消化的溫度對鈹吸光度之影響 40
圖4-5. 微波加熱時間對鈹吸光度之影響 41
圖4-6. 醋酸銨緩衝溶液用量對鈹吸光度之影響 42
圖4-7. acac用量對鈹吸光度的影響 43
圖4-8. 醋酸銨緩衝溶液之pH值對鈹吸光度之影響 44
圖4-9. GFAAS測定20 μL甲醇溶液中含有0.7 pg鈹之示範 圖譜 46
圖4-10. 灰化溫度對鈹吸光度之影響 47
圖4-11. 灰化時間對鈹吸光度之影響 47
圖4-12. 原子化溫度對鈹吸光度之影響 48
圖4-13. 原子化時間對鈹吸光度之影響 49
圖4-14. 比較直接將鈹配製於甲醇中之檢量線與標準添加法之檢量線 51
參考文獻
1.Merck Index, 10 th ed., p.166, 1983, Rahway, New Jersey.
2.E. Merian (editor), 1991, “ Metals and Their Compounds in the Environment Occurrence, Analysis and Biological Relevance”, pp. 775-787, VCH Publishers, New York.
3.F. A. Cotton and G. Wilkinson (editor), 1972, “Advanced Inorganic Chemistry”, 3rd ed., pp.207-208, John Wiley and Sons, New York.
4.“Beryllium”, World Health Organization(WHO)網站:http://www.who.int/water_sanitation_health/GDWQ/Chemicals/berylliumfull.htm, 1996, World Health Organization, Geneva.
5.B. E. Douglas, D. H. M. Daniel and J. J. Alexander (editor), 1994, “Concepts and Models of Inorganic Chemistry”, 3rd ed., pp.225, 718-724, John Wiley and Sons, New York.
6.J. T. Kretchik, 2000, “Beryllium”, Chem. Health Safety, 7, 40.。
7.“特定化學物質作業主管安全衛生教育訓練教材”,民國88年修正,第四版,pp. 25-26,中華民國工業安全衛生協會編印,台北。
8.M. Sitting, 1985, “Handbook of Toxic and Hazardous Chemicals and Carcinogens”, 2nd ed., pp.125-129, Noyes Publications, New Jersey.
9.J. L. Burguera, M. Burguera, C. Rondón, P. Carrero, M. R. Brunetto and Y. Petit de Peña, 2000, “Determination of beryllium in natural and waste waters using on-line flow-injection preconcentration by precipitation/dissolution for electrothermal atomic absorption spectrometry”, Talanta, 52, 27.
10.I. Nukatsuka, K. Sakai, R. Kudo and K. Ohzeki, 1995, “Studies on the adsorption of trace amounts of beryllium(II) on the surface of silica fibres from an aqueous phase for the development of a novel enrichment technique for electrothermal atomic absorption spectrometry”, Analyst, 120, 2819-2822.
11.B. J. alloway and D. C. Ayres (editor), 1997, “Chemical Principles of Environmental Pollution”, 2nd ed. , pp. 49, 208, Blackie Academic and Professional, London.
12.I. A. Saleh and I. A. Doush, 1998, “Survey of trace elements in household and bottled drinking water samples collected in Riyadh, Saudi Arabia”, Sci. Total Environ., 216, 181-192.
13.T. Okutani, Y. Tsuruta and A. Sakuragawa, 1993 “Determination of a trace amount of beryllium in water samples by graphite furnace atomic absorption spectrometry after preconcentration and separation as a beryllium-acetylacetonate complex on activated carbon” Anal. Chem., 65, 1273-1276.
14.M. C. Valencia, S. Boudra and J. M. Bosque-Sendra, 1993, “Determination of trace amounts of beryllium in water by solid-phase spectrophotometry”, Analyst, 118, 1333-1336.
15.“Beryllium and compounds”, USEPA網站:http://www.epa.gov/ttn/uatw/hlthef/berylliu.html
16.“Complete List of Agents evaluated and their classification”,IARC網站:
http://monographs.iarc.fr/ENG/Classification/crthgr01.php
17.Agency for Toxic Substances and Disease Registry (ATSDR), 1992, “Toxicological Profile for Beryllium (draft)”, U. S. Public Health Service, U. S. Department of Health and Human Service, Atlanta, Georgia.
18.“Current drinking water standards”, USEPA網站:http://www.epa.gov/safewater/mcl.html
19.J. Kubová, V. Nevoral and V. Streško, 1994, “Determination of beryllium trace contents in mineral waters after preconcentration on a chelating ion-exchanger”, Fresenius' J. Anal. Chem, 348, 287-290.
20.A. W. Stange, D. E. Hilmas and F. J. Furman, 1996, “Possible health risks from low level exposure to beryllium”, Toxicology, 111, 213.
21.H. Vanhoe, C. Vandecasteele, B. Desmet and R. Dams, 1988, “Determination of beryllium in environmental samples by electrothermal atomic absorption spectrometry”, J. Anal. At. Spectrom., 3, 703-707.
22.I. Chamberlain , K. Adams , and S. Le , 2000 , “ICP-MS determination of trace elements in fish”, At. Spectrosc. , 21 , 118-122.
23.陳煇仁,2005,“錫蘭橄欖葉抗氧化成分之研究”,國立台灣大學森林環保暨資源學研究所碩士論文,台北.
24.A. Saija and N. Uccella, 2001, “Olive biophenols : functional effects on human wellbeing”, Trends in Food Science & Technology, 11, 357-363.
25.“Beryllium Research Highlights”, NIOSH網站:
http://www.cdc.gov/niosh/topics/beryllium/newsletter.html
26.李嘉真,2001, “以石墨式原子吸光法測定頭髮中鈹之研究”, 私立東海大學環境科學系碩士論文,台中.
27.M. T. Hsu, M. H. Chen, S. R. Yang, and M. S. Kuo, 2004, “Application of Acetylacetone Chelation Solid-Phase Extraction to GFAAS Measurements of Trace Amounts of Beryllium in Marine Organisms”, Anal. Sci., 20, 1697-1700.
28.T. Stiefgl, K. Schulze, G. Toelg and H. Zorn, 1976, “Determination of beryllium in biological materials by flameless atomic-absorption spectrometry”, Anal. Chim. Acta, 87, 67-78.
29.J. L. Burguera, M. Burguera, C. Rondon and P. Carrero, 1999, “Semi-permanent lutetium modifier for determination of beryllium in urine by electrothermal atomic absorption spectrometry”, Spectrochim. Acta, Part B, 54, 1743-1753.
30.H. C. Wang, H. W. Peng and M. S. Kuo, 2001, “Determination of beryllium and selenium in urine and of selenium in human serum by graphite-furnace atomic absorption spectrophotometry”, Anal. Sci., 17, 527-532.
31.H. W. Peng and M. S. Kuo , 2000, “Determination of trace amounts of beryllium in drinking water and of beryllium vapor in air by GFAAS using acetylacetone as a chelating agent”, Anal. Sci. , 16, 157-161.
32.Y. Yamini, J. Hassan, R. Mohandesi, and N. Bahramifar, 2002,”Preconcentration of trace amounts of beryllium in water samples on octadecyl silica cartridges modified by quinalizarine and its determination with atomic absorption spectrometry”, Talanta, 56, 375-381
33.C. B. Rhoades, 1996, “Clean laboratory chemistry for the microwave-assisted digestion of botanical samples”, J. Anal. At. Spectrom., 11, 751-757.
34.B. Frengstad, A. K. M. Skrede, D. Banks, J. R. Krog and U. Siewers, 2000, “The chemistry of Norwegian groundwaters: III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP-MS techiques”, Sci. Total Environ., 246, 21-40 .
35.M. Meneses, J. M. Llobet, S. Granero, M. schuhmacher and J. L. Domingo, 1999, “Monitoring metals in the vicinity of a municipal waste incinerator : temporal variation in soil and vegetation”, Sci. Total Environ., 226, 157-164.
36.W. R.Wolf, M. L. Taylor, B. M. Hughes, T. O. Tiernan and R. E. Sievers, 1972, “Determination of chromium and beryllium at the picogram level (in biological and in environmental samples) by gas chromatography-mass spectrometry”, Anal. Chem., 44, 616-618.
37.W. Bashir and B. Paull, 2001, “Sensitive and selective ion chromatographic method for the determination of trace beryllium in water samples”, J. Chromatogr. A, 910, 301-309.
38.H. B. Singh, N. K. Agnihotri and V. K. Singh, 1998, “Determination of trace amounts of beryllium using derivative spectrophotometry in non-ionic micellar medium”, Talanta, 47, 1287-1296.
39.D. A. Skoog , F. J. Holler , and S. R. Crouch , 2007, “Principles of Instrumental Analysis”, 6th ed., Thomson Learning , Inc. , U.S.A. , p. 238 & p. 243.
40.紀柏享,楊末雄,孫毓璋,1998,“微波消化之方法與應用”, Chemistry (R.O.C), 56, 269-284.
41.H. M. Kington and L. B. Jassie, 1986, “Microwave energy for acid decomposition at elevated temperatures and pressures using biological and botanical sample”, Anal. Chem., 58, 2534-3541.
42.F. E. Smith and E. A. Aresenault, 1996, “Microwave-assisted sample preparation in analytical chemistry”, Review, Talanta, 43, 1207-1268.
43.K. J. Lamble and S. J. Hill, 1998, “Microwave digestion procedures for environmental matrices”, Critical Review, Analyst, 123, 103R-133R.
44.R. N. Sah and R. O. Miller, 1992, “Spontaneous reaction for acid dissolution of biological tissues in closed vessels”, Anal. Chem., 64, 230-233.
45.S. Baldwin, M. Deaker and W. Maher, 1994, “Low-volume microwave digestion of marine biological tissues for the measurement of trace elements”, Analyst, 119, 1701-1704.
46.Water Co., 1999, “固相萃取(SPE)之應用及最新技術發展”, Connections, 1, p. 3.
47.D. Rood, 1995, “The use of solid phase extraction for environmantal samples”, In Quality Assurance in Environmental Monitoring:Instrumental Methods, eds. Smbramanian, G., VCH Publishers, New York.
48.J. A. Adam , E. Booth , and J. D. H. Strickland , 1952, “The determination of microgram amount of beryllium using acetylacetone”, Anal. Chim. Acta, 6, 462-471.
49.M. Takaya, 1999, “Development of an analytical method for beryllium in airbone dust by micellar electrokinetic chromatography”, J. Chromatogr. A, , 850, 363-368.
50.A. Ringbom, 1963, “Complexation in Analytical Chemistry”, Interscience Publishiers, John Wilye and Sons, New York, p.321.
51.C. C. Li and M. S. Kuo , 2002 , “Application of the acetylacetone chelation solid-phase extraction method to measurement of trace amounts of beryllium in human hair by GFAAS”, Anal. Sci., 18, 607-609.
52.M. Ochs and S. Ivy-Ochs, 1997, “The chemical behavior of Be, Al, Fe, Ca and Mg during AMS target preparation from terrestrial silicates modeled with chemical speciation calculation”, Nucl. Instrum. Meth. Phys. Res., B, 123, 235-240.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔